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SUMMARY

This report presents ,a description of the software developed for
WEST-3, a new, all digital, and fully programmable wind turbine simulator
developed by Paragon Pacific Inc.. In addition to the usual complement of
software found in any digital computer, WEST-3 has additional software
modules specialized for the processing of wind turbine simulation models.
In the report, the process of wind turbine simulation on WEST-3 is
described in detail.

The major steps are, the processing of the mathematical models, the
preparation of the constant data, and the use of system software to
generate executable code for running on WEST-3. The mechanics of
reformulation, normalization, and scaling of the mathematical models is
discussed in detail; in particular, the significance of reformulation which
leads to accurate simulations. Descriptions of the preprocessor computer
programs which are used to prepare the constant data needed in the
simulation are given. These programs, in addition to scaling and
normalizing all the constants, relieve the user from having to generate a
large number of constants used in the simulation. Also given in the report
are brief descriptions of the components of the WEST-3 system software:
Translator, Assembler, Linker, and Loader. In common with other digital
computers, the task of the WEST-3 system software is to generate the code
which can be loaded into the machine.

The report contains details of the aeroelastic rotor analysis, which is

the center piece of a wind turbine simulation model. Listings of the
variables, constants, and equations used in the simulation are also given.

vii




1. INTRODUCTION

Paragon Pacific Inc. has developed the WEST-3 for the real-time domain
simulation of wind turbines. WEST-3 is an all digital, fully programmable,
parallel processing system. It avoids the "hardwired" analog implementation
of the previous WEST systems. High speed simulation is made possible by the
parallel processing capability, and full programmability is assured by the
all digital technology. A complete description of the WEST-3 system can be
found in References 1 and 2. The details of the WEST-3 software are
presented in this report.

The overall performance and usefulness of any simulation system depends
upon the effectiveness of the software; and WEST-3 is no exception., The
primary objective of the software developed for WEST-3 is to make it easier
for a user to conduct useful wind turbine simulations. To meet this
objective, in addition to the usual complement of software found in any
digital computer, WEST-3 has additional software modules specialized for
the processing of wind turbine simulation models.

Figure 1.1 shows an overall schematic of the WEST-3 simulation process
consisting of,

1. preparation of the simulation model ( rotor and subsystems )
2. preparation of the constant data

3. use of the system software to generate executable code

4. running of the simulation and the inevitable debugging.

Presented in this report are descriptions of the various components of
software required to carry out a wind turbine simulation on WEST-3. The
report closely follows the schematic of Figure 1.1, and is organized as
follows:

Section 2 contains descriptions of all the mathematical models used in the
simulation. Reformulation, normalization and scaling, which are of critical
importance in WEST-3 simulations, are discussed in Section 3. A discussion
of variable scale factors is presented in Section 4. Subsequent sections
deal with the preparation of constant data, and the system software
available in WEST-3. Section 7 contains some concluding remarks. A list of
References is given in the last section. Appendices contain some important
details of the aeroelastic rotor analysis, gimbal analysis, and complete
listings of the variables, constants, and equations used in the simulation.
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2. WIND TURBINE MATHEMATICAL MODEL

The simulation model of a wind turbine is a mathematical description of
a number of complex physical phenomena involved in the extraction of useful
energy from the system. The full model is formed by combining a number of
smaller models of the various physical systems in the problem. Figure 2.1
shows the overall configuration of the simulation model. It is a synthesis
of models for the rotor, the air mass, the support (tower), the power
train, and the control system. Figure 2.2 is a more detailed schematic of
the simulation model showing the variables that are passed among the
subsystems.

Appendix A defines the general nomenclature conventions used in this
report. Some of the nomenclature used in this report differs from
conventional practice, Therefore, a study of Appendix A 1is strongly
recommended for an understanding of the equations presented in this report.
Also Table B.l1 of Appendix B contains the nomenclature pertinent to the
rotor model. A definition of all the variables and constants used in the
simulation model can be found in Appendix F.

Models presented herein have been used in other wind energy system
simulations (see, for example, References 3, 4 and 5). The descriptions of
the models presented in this report are complete, and should not require
references other than standard texts on mechanics and controls. However,
References 3, 4 and 5 do present useful data on more detailed versions of
these models. Some of the major features of the model implemented in WEST-3
are,

1. Three elastic degrees of freedom for each blade

2. Tower model with six physical (three modal) degrees of freedom
3. Gimballed/Teetering rotor capability

4. Blade tip loss, and flow retardation effects in the rotor

5. Nonlinear wind shear model

6. Bandpass wind gust filters

7. Tower shadow model

8. General models for the power train and control system

Due to the modular nature of the implementation, and the full
programmability of WEST-3, alternate models/tasks can be incorporated with
relative ease. Following are descriptions of the subsystems shown 'in
Figures 2.1 and 2.2.

2.1 Aeroelastic Rotor

Of all the subsystems, the rotor is by far the most complex accounting
for a bulk of the computational load in the simulation. A detailed
description of the aeroelastic rotor model is given in Appendix B. Figure
2.3 shows a simplified schematic of the rotor model. Following is an
outline of the major tasks performed in the rotor model, during numerical
integration, for every azimuthal position of the rotor.

* Compute the aerodynamic loads on the blade by using strip theory.
Each blade is divided into a number of radial segments and radial
stations. The aerodynamic coefficients, as functions of the angle of
attack, are obtained by table look-up.

2-1
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* Determine the effects of elasticity on the blade deflection,
velocity, acceleration, and loading at each radial station.

* Obtain the forces and moments at the rotor hub by a summation of the
loads at all the radial stations of the blade.

* Account for the effects of the rotor hub degrees of freedom, i.e.,
gimbal (teetering), if present in the model.

2.2 Support (Tower):

The following tasks are performed in the tower model:

* Simulate the dynamics of the tower/nacelle by using the modal
analysis, the modal information being typically generated by a finite
element program such as NASTRAN.

* Compute the velocity and acceleration of the hub for use by the rotor
model.

It 1is not practical to hypothesize a fully general model for a
subsystem such as the support system, because of the many possible designs.
Accordingly, the approach taken herein is to implement a general linear
model. Other nonlinear phenomena, such as hysteresis in gear trains, can be
included in the model as and when required. The support system equations
which can incorporate many configurations of tower/nacelle dynamics are,

*"+D.s"+W..s=
s Dg. s Wﬁ 9gr

where

9s < Gsf' fh + Gsm' T
The hub velocity and acceleration are given by,

=S .8 +v : w, =S .58’ +Ww
Vi Sv s : Sw

bh h bh
Vi = Sye 87T+ VL wp = S.. 87T +w

A modal model has been used (see discussion of modal analysis in Appendix
B). The vector, s, contains the normal coordinates. The vector, g _ contains
the generalized forcing functions, each divided its Tespective
generalized mass. The diagonal operators, D_., and W_~. are damping and
frequency matrices, respectively, associated with the normal mode analysis.
The forces and moments acting on the tower are, respectively, and m

The operators, S.. and S . are the modal matrices, so that they produce tge
shaft motion when they operate on the normal coordinate velocity, s°.

Arrays G . and G__. operate on the shaft loads produced by the rotor
to generate Ehe genePLllzed forcing function. These operators can be
derived by transposing the modal matrix operators followed by dividing each
resulting row with the generalized mass of the associated mode.



Columns v h and Wn are incorporated in the support system model, which
are supplied ?o the mJ%el from an external source. These columns represent
"base" motions of a moving system to which the elastic support system is
attached (e.g., if a wind turbine is mounted on a barge). The external
source can be the System IO Data Interface (SIDI) incorporated in the
WEST-3 hardware, or it can be an additional set of models coded and loaded
in WEST-3 to represent such a base flexibility. These additional columns
have been incorporated in the model at this Jjuncture to provide more
generality.

A specialized version of the general matrix support modeis as presently
implemented consists of a tower with three modal degrees of freedom, in the
following directions: surge (motion along the #3 rotor axis), sway (lateral
motion along the #2 rotor axis), and yaw (rotation about the #1 rotor axis,
or tower torsion).

2.3 Control System:

The function of the control system is to change the blade pitch angle
so that a desired rotor speed and/or power output is maintained. As is the
case of the support system, control systems <can take on many
configurations. A general linear state controller model is implemented in
WEST-3. This model can embrace many control system configurations, but will
require additional code if nonlinear phenomena are to be included. The
generic equations are,

a"+A_.a=a M +a_2Z+a 2°+a_2 + a P+ a S+ a’
a PP Z zd g "a pr rq sr “rq o

c = Ca. a+ cp Mp + cz 2 + cZd 77+ cg Za + cpr Prq + csr Srq + cO

Z°+L 2 +L _ P + L S+ L

T
Lo = Ly» @ + LM+ L 2+ Ly g %a * Tor Prq * Dsr Seq * Do

gc

The column, a, is the state vector for the system, and can be any size.
Control system degrees of freedom associated with filters, compensation
networks, integrators, etc., can be converted into the state form shown.
The control system receives inputs, processes them with the state
algorithms, and produces outputs. Inputs are: command requested power
(p_ ), command rotor speed (S__), rotor speed (Z), rotor acceleration (Z°),
powér train moment (M), 5gd alternator speed (Z_.), and the shaft
velocities and time derfvatives of velocities. The zefo subscript denotes
initial conditions or some constant offsets, 1if any. The control system
produces the control column, ¢, for the rotor, and a torque on the
alternator rotor, Lgc‘

Figure 2.4 shows an example of a control system which is typical for a
wind turbine; blade and alternator controls are included.
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Referring to Figure 2.4, the equations for this system can be written
as follows; the basic equations are shown first, followed by an equivalent
version which conforms to the general state controller model.

Basic Equations:

Controller: Alternator
Ze = (Srq - 2) A3 = Kpp (Za - Zn)
Al = KI Ze Lgc = Kpl (Kpf Prq - sz Za - A)
A2 = (l/Tc) (A1 - A2 + Kc Ze)

Rearranged Equations:

Ze=(Srq-Z)

Ai = Azl Ze

By = By By T AgpoPy t AT
Ay = Agy 2, + A

L =L.,A, +L P

gc al3 "3 pr "rgq * Lg 25

Cl = Calz A2 +ee.s.. Blade Pitch Angle

Once the derivatives, a°, are computed, the control column, a, is
obtained by numerical integration. The Euler integration method has been
used in WEST-3; the time derivative is simply multiplied by the time step
to get the change in a over a time interval. This method is suitable in
most cases because the periods associated with most wind turbine control
systems are long compared with the numerical integration step size. If the
control loops incorporate high gains, and therefore produce high frequency
control modes with short periods, then a more sophisticated numerical
integration algorithm might be indicated.

2.4 Power Train

The following tasks are performed in the power train model:

* Compute the rotational acceleration and velocity of the rotor, taking
into account the dynamics of the power train components.

* Determine power generated and the reaction loads applied to the
support.

* Advance the azimuthal position of the rotor.

2-8




The general linear power train model in WEST-3 can be written as,

Jp.p +Bp.p +Kp.p=pth3+pLLgc+pzdz

p = (pl, pz), power train variables; zZ = pi ; 2% = pi’

A standard differential equation is incorporated, with inertia, damping
and stiffness arrays, J.., B_. and K .. Variable inputs to the model
include the rotor torque,s> ’ %eneratorpcontrol torque, L (i.e., torque
applied to the generator rotor by the electrical system Which is part of

the control system in these WEST-3 models) and rotor spin acceleration, Z°.

Appendix E presents a derivation excerpted from Reference 4 which
provides for a single power train degree of freedom. This simple analysis
reveals the "algebraic loop" problem that rises naturally from the
derivation of a power train model: this loop will drive almost any computer
implementation of a power train model unstable. The reformulation used in
Appendix E to solve this problem requires subtracting the influence of 2°
from the rotor shaft torque, and including this inertial effect instead in
the power train equations. This approach, which is essential for successful
power train simulation, requires the parameter, 2°, as an input. The
generation of this parameter should be the same (in time) as that sent to
the rotor to produce the rotor torque being used to solve the power train
equations over a time step.

However, in some cases, even the reformulation outlined above may not
prevent numerical instabilities when the power train model is coupled with
the rotor model. In fact, the problem occured during the WEST-3 validation
studies when the MOD-0 wind turbine was being simulated. Full details of

the nature of the instability, and the special procedure devised to correct
it can be found in Reference 7.

Figure 2.5 shows an example power train with two degrees of freedom.

w2 w

1
— —_——

/ ! K
g ANAN— A —]
2 — L 2 — 1 Mh R
4 = g¢ g
/ IR

77777 Voewd

Alternator Power Train Rotor

Figure 2.5 Example of a Power Train Model



Referring to Figure 2.5, the governing equations are,

Jl wito= - Kl (wl—wz) - Bl (wl-wz) - Cl Wy + Mh
J2 wyt = + Kl (wl-wz)‘+ Bl (wl-wz) - C2 W, = Lgc

These basic equations have to be "reformulated" (see Section 3.1 for a
diccussion of reformulation) to maintain computational accuracy.
Accordingly, the generic positional coordinates are replaced by
"differential” coordinates (which are the differences between positions of
neighboring inertias in the model). The reformulated equations are,

Pi° = ~ Ky Py~ Bpn Py T By Pyt Py Myt Ppgp 2
Pt = = Kypp Py ¥ Booy Py T Bppy P F Py Myt Ppgp T TP Ige
where,
Pp=% 2 =P
Pyp=w =% 2.=p
Z =

(pi - pi) ... Alternator Speed

The constants in the equations are defined as,

J =J, +J

T 1 "R

Kp12 = K1/ I Ppp = 17/ 9q
szz = (Kl/JT) + (Kl/Jz) Ppy = 1/ I
Bo11 = €1/ I Pra1 = IR/ I
Boiz =By / I Pra2 = IR/ 1
szl = (C,/3,) - (C; /3. Pp =1 /3,

szz = (Bl/JT) + (Bl/Jz) + C2/J2

The reader is directed to Reference 5 for more detailed derivations of
power train models. The Reference shows that even very general power

distribution system models convert to expressions of the form presented in
this Section.
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The azimuthal position of the rotor is advanced by using a "rate
resolver" algorithm. Actually, the sine and cosine of the azimuthal angle
are generated as follows:

sin(Y+DY)

sin(Y) cos(DY) + cos(Y) sin(DY)

cos (Y+DY)

cos(Y) cos(DY) - sin(Y) sin(DY)

where Y is the current azimuthal angle, and DY is the advance angle which
is a function of the numerical integration step size and the rotor speed.
However, the algorithm is unstable in the sense that amplitude errors cause
the sum of the squares of sine and cosine to be other than unity. To
correct this problem, the cosine of the advance angle is varied small
amounts from its nominal value (near 1.0) to correct for amplitude errors.
The procedure is as follows:

Given: Z (rotor speed), DT (numerical integration step size),
current values of cos(DY), Sin(Y), and cos(Y).

i. Compute sin(DY): sin(DY) = Z DT

ii. Compute the amplitude error: e, = sinz(Y) + cosz(Y) -1

iii, Make correction to cos(DY): cos (DY) = cos(DY) - Ga e,
new

iv. Compute the sine and cosine of the new azimuthal position, by using the
new, corrected value of cos(DY).

Here the gain factor G, has be chosen so that the algorithm is stable. For
wind turbine simulation work the choice of Ga = 0.25 yielded good results.

2.5 Air Mass

The following tasks are performed in the Air Mass model:

* Define the linear and rotational velocities of air flow around the
rotor.

* Compute the air flow retardation velocity as a function of the rotor
thrust by using the standard Glauert momentum model (Reference 6).

* Simulate the effects of wind gusts by generating random number
functions which appear as white noise in the system. The desired gust
spectra are obtained by using quadratic filters.

* Determine the influence of wind shear and tower shadow on the air
flow as seen by the blades.

2-11



The equation for the retardation velocity can be written as,

2,1/2

Vew = Rap RHOp Fpp3 / Vanz * Vans!
where V_ _ is the retardatlon velocity, F is the rotor thrust, RHO_ is the
air density ratio, is a constan@ and v are the local
aerodynamic velocity coﬁponents. Note that an 1mpE%c1t %op exists in the
model, since the local aerodynamic velocity is itself a function of the

retardation velocity. The problem is solved by a servo loop shown in Figure
2.6.

FH3% RHGR VWI+VGI
i ¥
VRW VAH
—> KAR‘ 2
1. .4
aC=v/oT 1B X +
Fl4f'-lr “é - -+
A 4+
r—" {——
VAH2
4 |

Figure 2.6 Servo Loop for the Air Flow Retardation Velocity

The servo loop solves for the reciprocal of the local aerodynamic velocity,

_ 2 2,1/2
R, = l'/(Vahz * Van3 )
The calculation first computes an error function,
_ 2 2 2
e =1+ - R Vah2 ¥ Van3 )

Wthh is zero if R is correct. This error is multiplied by a gain factor,

; (which is lnput data to WEST-3) to produce a change in R which is in
tﬁe direction to correct the error.

The size of the loop gain, G will determine the speed at which the
servo will converge on the correé% solution. Excessive gains will lead to
instability, however. Because the servo is nonlinear, the stability margin
for the system varies over the operational envelope.
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The local aerodynamic velocity can now be written as,

Vae = Vo T il er + vg
Wop = Wt ¥g

Vah = Vn * Ry (Y Ve
Yah = Wp * Rz (er)' Yt

The retardation velocity computed by the servo discussed above is
subtracted from the ambient wind. The steady windspeed is specified by the
two input columns, vw and ww. To these are added gust columns, v_ and wg.

Windgusts are simulated by generating random number functions which
appear as white noise in the system, and then by passing these through
quadratic filters to produce gust spectra with controllable bandwidth,
magnitude and center frequency. Six independent filters are incorporated,
so that the wind can gust in six degrees of freedom near the rotor. The
equations are,

+B.qgq + K. =r
% g 99t Bgr 99 = I
Vg = Yqur Y

= w - °
Yg = "qur 99

The windshear modulates the windspeed locally at a blade element
depending -on the distance the element lies above the ground. A table
look-up scheme permits the use of an arbitrary nonlinear profile for the
wind. The tower shadow effect (windspeed changes due to proximity of a
blade to the tower) is usually specified as a percentage by which the wind
speed is reduced, when the blade is within the shadow region, either
rectangle or a sector. In general, windshear and tower shadow effects on
the local blade aerodynamic velocity are implemented by calling two
subroutines as follows:

S

]

hr = SHEAR ( cos (Yi)' sin (Yi), Sj )

S

SHADOW ( cos (Yi), sin (Yi), S. )

hd ]

v = S

* *V
aa hr S

hd ah

where Y. is the azimuthal angle of the i-th blade, S, is the position j-th
radial Station, Sh is the correction factor due to wind shear, and S is
the correction factor due to tower shadow. The augumentive velocity, Vaa’
is added to the local aerodynamic velocity to account for the wind sh&ar
and tower shadow effects., In some cases, such as when the wind shear
profile is linear, the corrections to the local aerodynamic velocity can be
obtained by simple algebraic equations, instead of calling subroutines,
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3. SIMULATION MODEL: REFORMULATION, NORMALIZATION, AND SCALING

The simulation of a wind turbine system begins with the mathematical
modelling of the various physical phenomena which are occuring in the
system. The mathematical models are then "processed", taking cognizance of
any special numerical problems, and the characteristics of the simulator on
which the models are to be solved. For example, all the computations in
WEST-3 are done in 16-bit fixed point arithmetic with the attendent
limitations in accuracy of the computations. Special software could be
written to perform 16- or 32-bit software floating point operations.
However, such software would drastically reduce the speed of simulation.
Therefore, 16-bit fixed point computations have been retained in the
WEST-3, and the simulation model has to take cognizance of this fact.

The objective of processing the mathematical models is to come up with
a simulation model which permits

1. Accurate simulations in real time
2. Adapation to wind turbines of varying physical sizes.

Presented in this section are details of processing needed for wind turbine

simulation on WEST-3. There are essentially three steps; Reformulation,
Normalization, and Scaling.

3.1 Reformulation

Many subtle numerical problems arise in a wind turbine simulation; in
particular, in the solution of the aeroelastic rotor equations. There are
effects in the model that produce very large numbers. In the final results,
differences of these large numbers yield small numbers which reflect some
very important dynamical characteristics. The computation of the small
differences of large numbers can lead to inaccurate results even in
computers having large word sizes. On WEST-3, with its 16-bit fixed point
arithmetic, this problem can completely destroy the accuracy of the
simulation.

The answer to the problem is to reformulate the equations in such a way
that small, important effects are not masked during the computations. The
idea is to generate equations where subtractions of large numbers have
already taken place so that, in the simulation, one solves directly for the
important small-difference terms. The specific ways of reformulation must
be selected with a thorough knowledge of the physics of the problem, The
models and their special idiosyncracies must be well understood so that the
critical areas that produce numerical problems can be identified and
reformulated. Full details of the reformulation of the aeroelastic model
used in WEST-3 can be found in Appendix B.

3.2 Normalization

The reformulated model goes through a process of normalization. This is
a process of redefining all the variables in the model by using
characteristic or reference values of dynamical quantities, such as,
velocity,; acceleration; force and moment. The normalized parameter will
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usually exhibit the same range of excursion, whether the machine being
simulated is large or small. Though not a requirement, the process yields,
in most cases, nondimensionalized equations. The objective of normalization
is keep each number in the simulation within a reasonable range. The same
normalized simulation model, with perhaps minor modifications, can be used
for wind turbines of widely varying physical sizes.

Each entity (variable/constant) in the simulation has a normalization
factor defined as follows:

Es = Ep * Fs *F
where E_ is the "system entity" or the simulation entity, and E_ is the
"physicgi entity" or the actual physical entity. In the curren® WEST-3
implementation, units on physical entities are feet, pounds, seconds, and
radians, unless otherwise specified. Degrees, inches or metric units are
not incorporated with physical entities. The "scale factor", FS is
described in the next subsection, 3.3.

n

F 1is the "normalization factor". For example, if E_ is the rotor
thrusg, then F will be the reciprocal of some force (e.éﬁ, the average
thrust or the mean value of the design thrust that can be developed), so
that Ep * Fn is nondimensional.

In the definitions of variables and constants in this section, the
normalization factors are expressed as ratios. The absence of a slash in
these definitions is interpreted as a default numerator.

The normalization factor definitions thus appear in the forms
F(numerator) /F (denominator)

where the numerator and denominator factors can be FORTRAN expressions. In
these normalization factors, the numerators and denominators are viewed
separately. Only one slash is allowed within each definition. Examples of
normalization factors are:

TH/RF NB*PXA*C/RHO*R*R*W 1./RHO*V*V

Note that these factors are not decoded as a standard FORTRAN expression.
For example, standard FORTRAN decoding begins at the left of an expression
and performs the operations as it moves to the right. FORTRAN would decode
the second normalization factor, above, as follows:

(NB*PXA*C/RHO) *R*R*W
In the conventions defined for normalization factors herein, the factors
are considered pure ratios. Proper decoding for this convention in the

example above would therefore be:

(NB*PXA*C) / (RHO*R*R*W)




3.3 Scaling

After normalization, the simulation model is "scaled", a process which
ensures that each variable and constant in the model takes on values within
the range of +1 and -1. Scaling is needed because all the computations in
WEST-3 are done in 1l6-bit fixed point arithmetic, a feature which is a
major contributor toward achieving a real-time simulation capability. The
limited significant figure accuracy attendent in such arithmetic demands
that special scaling techniques be used to process the equations (and the
constant data) before they are solved on WEST-3. The scaling process is
similar to the one used in analog computers. However, unlike analog
computers, the all digital WEST-3 is rather unforgiving of scaling errors
which cause over/underflows.

In conjunction with the normalization factor, the scale factor relates
a physical entity to the corresponding system entity, i. e.,

ES—EP*FS*F

The scale factors, F_, are numbers. They are selected so that the
system entity does not exceed the range -1 < E_ < +1. In the simulation,
the system entities are 16-~bit numbers that Can be viewed as having a
decimal point to the far left of the number. In the Computational Units
(CUs) of WEST-3, the numbers are represented in WEST-3 in 2's complement
form. Hence, these numbers can only range between +/-.9999 (decimal). The
CUs incorporate a hardware multiplier that performs 2's complement
multiplies assuming the decimal point placed as defined above. Hence, two
numbers with maximum values multiply to a number also at the maximum value
incorporated in the system.

n

3.4 Database Representations of Variables and Constants

Complete definitions of all the variables and constants in the
simulation model are given in Appendix F. Each definition consists of two
lines. The first line shows:

Label(s): Scale Factors : Normalization Factors

and the second line of each definition is an arbitrary field of 80
characters expressing the definition of the entity in English.

The labels are the symbolic names of the entities that appear in both
the physical and scaled equations. The label field is terminated by a
colon. Scale factors follow as a string of numbers separated by commas.
Normalization factors follow a colon. The normalization factors are
separated by commas. In these definitions, blanks have no significance, and
can be placed anywhere to aid in the clarity of the definitions.

The syntax associated with variable and constant definitions uses an
"autospawn” capability: a shorthand procedure whereby many definitions can
appear on any line. The autospawn facility operates on an entity enclosed
by commas, a colon and comma, or a comma and the end of the entire line.
The autospawn syntax, in general, has the form:

la’a’a ol E R Yo o alkey
A VAT Y AV W, ¢ 11



where the "C"s are characters of essentially any definition except
parentheses or the + or - sign. The autospawn syntax defines n+l items. The
first appears if the parentheses and the "+n" are dropped. The next is with
i+l substituted for i, and the parentheses and "+n" dropped. The last
defined entity is with the numeral "n" substituted for the "i".

For example, the syntax:
VA(3)+4

defines a string of labels:
VA3,VA4,VAS5,VA6,VAT

In some cases, the autospawn facility is used without parentheses to
repeat an identical definition. For example, the syntax:

.3333+43

Produces the equivalent of a string of four numbers ".3333". With this
definition, consider the following example of a variable definition using
autospawn:

VW(1l)+5: 2.5+45: 1./VR+2, 1./0R+2
WIND INERTIAL VELOCITY RESOLVED TO OVERALL SYSTEM COORDINATES.

This definition defines six scalar entities, VW1, VW2 ....VW6. All have
scale factors of 2.5. The first three in the string have normalization
factors 1./VR (where "VR" in this case is a velocity reference = rotor tip
speed in the case of the rotor), and the final three entities in the string
are normalized to the reciprocal of "OR" (Omega reference- a rotational
velocity reference which in the case of the rotor is the nominal rated
rotor spin rate).

The autospawn facility is very powerful, especially for systems which
tend to be organized in vector strings. The size of the data base required
to define a complex set of system equations is considerably reduced using
this autospawn definition. The autospawn can produce decreasing numbers in
a definition if a minus (-) sign is included in the parentheses. For
example, a definition of the form

VAB(-6)+5

might be convenient, where the autospawn would produce the equivalent
definition:

VAB6, VAB5, VAB4,....VABl.

Note that the final number in the string can be calculated by subtracting
the number following the "+" sign from the number in parentheses. The
similar situation emerges for ascending autospawn definitions, where the
last number in a string is the sum of the one in the parentheses and the
one after the "+" sign.
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3.5 Physical Equations and System Equations

The math models for the simulation are presented in this report section
in two forms: "physical equations" and "scaled equations". The physical
equations are direct representations of the reformulated mathematical
models, expanded to scalar form. These equations incorporate physical
variables and constants. The scaled equations are those actually solved by
the computer.

Appendix G presents the physical equations for the wind turbine
simulation model consisting of the Rotor, Air Mass, Tower, Power train, and
control system. The corresponding system equations can be found in Appendix
H.

The parameters in the scaled equations are the system parameters. The
equations appear very much like the physical equations, except that many
terms in them have additional factors. These factors are always real
numbers. The scale factors are chosen so that these numbers are usually
bounded between +/-1, just like system parameters. The numbers can be out
of this range if they are integral powers of 2, however,

The factors in the scaled equations have been placed there so that the
scaled equations are equivalent to the physical equations. To see how this
is required, suppose the following normalization and scale factors have
been defined for certain variables and constants:

Symbol Scale Factor Normalization Factor
X 5. S/W*R
Y 2. T/P*Q
2 20. R/W
A 6. R*R/S
B 25. P*P*Q*Q*R/T*T*W

Let the physical equation appear as follows:

Z=A*X+B*Y*Y

In this example, the scaled equation (i.e., the system equation) will be
Z = .6667 *A*X+ ,2*B*YyY*ry

One can confirm the equivalence of the system equation to the physical one
by substituting physical parameters (with the normalization and scale
factors included) in lieu of the corresponding system parameters in the
system equation. The items in the normalization factors should all cancel
and all real constants should merge into unity factors, such that the
system equation so processed becomes identical to the physical equation.

As stated before, the factors that appear in the system equations
(placed there for equivalence to the physical equations) are usually
bounded between +/-1. Indeed, the scale factors on the variables and
constants are chosen so that this is the case. When this is true, the
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hardware multiplier is used to simply multiply the number by the other
factor making up a full term in an equation. If this number appears as a
product with another real number in a term, the numbers can be combined
into a single number. For example, if a term in a physical equation
contained a number "2.", and a factor (arising from the scaling
considerations) of ".3333" is also needed on the term, the final numeric
factor would be ".6666", assuming of course that this final factor obeys
the rules.

The rules for factors are: bounded by +/-1 or integral powers of 2. In
the first case, the factor is processed in a normal way. If the factor is
represented as a power of 2, it must be considered a shift operation in the
code, not a multiply. For example, a factor of 16. would require a number
to be shifted four times to the left. An arithmetic shift would be made, so
that the bits that appear in the four rightmost positions in the word
(after shifting) are zero.

Division by integral powers of 2 can also be accomplished by shifting
right. Hence, it is correct to show divisions in equations, but this is
seldom of value since the division by 2 can be easily represented as a
factor of ".5",

It should be noted that one shift takes the same time in a CU as a
multiply. Factors larger than 2 will require more that one instruction,
however, so they are slower than multiplies and should therefore be avoided
unless absolutely necessary.

Scale factors and normalization factors are chosen based on a sound
understanding of the physics associated with the system being simulated.
After these factors are initially chosen, they are often changed many times
as a simulation is brought to operational status. The changes occur because
of many observations, including:

* A constant, after scaling and normalization, exceeds the range
+/-1.

* During simulation runs, a system variable is found to exceed
its range of +/- 1 for legitimate operating conditions of
interest.

* A numerical factor in a system equation is not within the rules
(within +/-1) or an integer power of 2.

* Inaccurate simulation results occur because important terms in
the equations are masked in the final calculations due to poor
scaling (leading to excessive loss of significant fiqure
accuracy) .




4. DYNAMIC SCALING

Most of the scaling associated with the simulation equations
incorporates "fixed" or constant scale factors; these have already been
discussed in Section 3. In key areas, however, variable scale factors are
needed because of the propensity of certain expressions to have severe
ranges of operation that preclude accurate simulation with only 16 bits and
a constant scaling.

In these cases, variable scale factors are used. These are in every way
equivalent to floating point exponents. These are only used where they are
definitely needed because they involve more operations (and therefore take
more time) than simple fixed-point operations.

When variable scale factors are used, they are interpreted as positive
binary exponents. An entity will thus be represented as

F * 2%*GF

where F is the fraction and SF is the variable scale factor. The fixed
scaling for the entity can be chosen so that SF is always a positive
integer number. Hence, SF is implemented in the programming by loading F
into the accumulator, multiplying it by the factor associated in the
expression and then shifting the result SF times to the left in the
accumulator., The undefined least significant bits (SF of them) in the word
are set to zero in this process.

In most cases where variable scale factors are used, two computer words
are used, one for F and the other for SF. In some cases, however (e.g.,
large tables), both F and SF can be packed into one word. For example, of
SF is given 3 bits, then one 16-bit word can carry the sign bit, a 12-bit
fraction (which is an accuracy of +/-.025%) and an exponent that can expand
the range of the parameter to +/-256 from the usual range of +/-1.

The 1l6-bit floating point format described above is very accurate in

representations of, for example, aerodynamic tables where the physical data
in the tables is usually not known to within 5 per cent.

4.1 Aerodynamic Geometry

This subsystem involves a special problem: the calculation of quotients
that can have a small denominator. The subsystem resides in the rotor blade
element computations, the group of computations in the simulation that are
most speed critical. For these reasons, special considerations have been
made regarding these computations.

The computations essentially require division, a process that is not
incorporated in the hardware of the Computational Units (CUs) of WEST-3.
Software divisions can be done, of course, but these are slow and therefore
very undesirable in this most critical area of the simulation.



Other considerations on the aero geometry calculations are-

* the results go to the aero tables-~ tables of physical data that are
never -known to high degrees of accuracy. Because of this, the results
of the aero geometry need not be any more accurate than the tables
are known. The aero geometry calculation must be made with speed and
accuracy carefully balanced so that excessive (unneeded) accuracy
does not penalize speed.

* The calculations are made in an integration loop, so that the values
of parameters entering and leaving the calculations change only a
small amount €£for every pass through the calculations. This fact
allows the use of algorithms that take advantage of the perturbation
nature of the process, using past values as starting points for new
calculations.

Figure 4.1 shows the aerodynamic geometry at blade radial station.

VASQ = VA2*2 + VA3**2
A _________ VA = SQRT( VASQ )

I VA

| Va3 SAB = VA3 / VA

{

! CAB = VA2 / VA

' va2 AB [

- ! M = RVC * VA

Figure 4.1 Aerodynamic Geometry at the Blade Station

Here VA is the air speed, VA2 and VA3 are its components, SAB and CAB are,
respectively, the sine and cosine of the angle of attack AB, M is the Mach
number, and RVC is the reciprocal of the local speed of scund. The Mach
number calculation is straightforward and requires no additional discussion
here. The others involve the square root and division operations, however,
both problematic in the simulation.

The calculation of airspeed is easily performed if the changes in SAB
and CAB are known. If the expression for the square of the airspeed is
differentiated and then divided through by 2*VA, the change in airspeed is
given as:

d(VA) = CAB * d(VA2) + SAB * d(VA3)

Hence, if the airspeed was known for the last pass through the equations,
the old values of SAB and CAB can be used with known differentials on the
input velocity components VA2 and VA3 to get the perturbation in airspeed.
A new estimate of airspeed can then be made, and used in the calculations
of new SAB and CAB parameters.

The real problem is the division by airspeed., An algorithm will now be

derived that converges to the reciprocal for small changes in the input
parameter.
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Let V be the known parameter, where it is necessary to compute x = 1/V.
If x_ is the last known value of the reciprocal, an error function, e, can
be défined using the new (given) V:

e=(V*X—l.)
If X is correct, e vanishes. The calculated error for Xo is

- * -

The derivative of e with respect to x is V. Since e needs to vanish, the
equation for dx is derived:

= = *
eo + de 0 eO + Vv dx

Solving for dx and noting that dx = x - xo, where x is the new desired
result:

X=X =-e€
(@] O/V

Approximating 1/V with the last value of x, xo, the correction expression
is

= * -
X =X (1. eo)
This is the final expression, since it is desirable to compute e, as an
intermediate calculation to see how close the convergence is. The e~ can be
eliminated, however, producing another version of the algorithm:

- * — *
X Xy (2. =V xo)
If V changes by small intervals, this expression converges rapidly to the
desired result using minimal calculations. Additionally, the error can be
tested and the number of iterations expanded. in cases where the error is
too large due to rapidly changing V.

This algorithm can be used to compute the reciprocal of air speed,
RECVA, which can be carried in the aero geometry section to facilitate
straightforward calculation of SAB and CAB. The problem with this is that
the reciprocal can span a very large range because airspeed can get very
small.

Variable scaling can be used to solve this problem where RECVA is
carried as a fraction and integer scale factor (floating point number). The
logic in the calculations detects overflow when RECVA is computed, which
calls for incrementing the scale factor and shifting the fraction right by
one (to eliminate the overflow). The scale factor can be decremented and
the fraction shifted left if the most significant bit of the fraction is
detected as a zero.

The floating point operations described above are simplified by the
fact that RECVA is always a positive number.
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4.2 Aerodynamic Coefficient Tables

The aerodynamic tables (for the wind turbine application where Mach
number is irrelevant) use SAB and CAB to produce lift and drag coefficients
CFA3 and CFA2. The tables. must apply to a 360-degree range of angle of
attack, AB, but they are both univariate tables in that only one of the two
input parameters are used to look up within the tables at a time.

The tables are separated into four quadrants defined by the points
where the sine and cosine of ABI are +/-.707. The quadrants and the
associated independent variables ("lookup parameters") are described in the
table, below:

Quadrant Definition Lookup Parameter
1 caB > .7071 SAB
2 SAB > .7071 CAB
3 CAB < -.7071 SAB
4 SAB < -,7071 CAB

Each of the quadrants has two tables, one for CFA3 and one for CFA2.
These tables have a number of elements that must be an integral power of 2,
but the numbers of elements in the tables associated with each quadrant can
be different. For example, quadrant 1 may have 1024 entries for CFA3 and an
equal number of CFA2 points. Quadrant 2 may have only 128 elements in each
table, however.

Parameters are fetched from each table simply by using the lookup
parameter as an address. The lookup parameter is masked to the correct
number of bits by multiplying it by a mask word. The result is added to an
offset, and the indirect address so created is used to fetch the desired
CFA3 and CFA2 numbers. By providing adequate granulation in the tables,
interpolation can be avided.

Because of the ranges that the aero coefficients can reach
(particularly CFA2), the tables are be 16 bit floating point numbers (three
bit binary exponent). The fixed scaling will enable the use of only
positive integer exponents.

The floating point numbers fetched from the tables are decomposed into
separate fraction and exponent words for use in computing the Aero Loads at
a blade radial station; products of these numbers with the dynamic pressure
and the blade chord will be shifted by the number of places of the exponent
to produce the final distributed blade aerodynamic loads, 1lift and dradgd.
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5. CONSTANT DATA PREPROCESSOR

In addition to the gereration of the simulation model, described in the
previous sections, the other major task associated with a wind turbine
simulation is the preparation of the constant data. The data consists of
physical data and specifications of the specific wind turbine to be
simulated; the rotor dimensions, the wind speed, commanded rotor speed, the
frequencies and mode shapes if the blade modes etc.. Additionally, there
are a large number of constants which have be computed for use by the
simulation model; for example, products involving the blade mass
distribution and the elastic mode shapes integrated over the blade span.

All this raw data has to be normalized and scaled before it can be used
in the simulation. In Figure 1.1 of Section 1, this prosess of generating
the scaled constants is indicated as being carried out by a "PREPROCESSOR".
In actuality, the preprocessor consists of more than one specially designed
computer program, running on a computer external to WEST-3. At present,
Digital Equipment Corp. (DEC) PDPll computers are being used for this
purpose at Paragon Pacific Inc.. This section presents a outline of the
mechanics of generating the scaled constants.

Figure 5.1 shows a schematic of the computer programs and the various
data files used in processing the constant data. The decision to have a
number of programs, instead of a single large program, was made mainly for
debugging purposes. It is envisaged that, for future work, a more compact
version of preprocessor will be developed. Referring to Figure 5.1, there
are two distinct components, generation of the physical constants, and the
generation of an executable load module which can convert the physical
constants into scaled constants. Following are brief descriptions of the
components.

DSS2:

This program is used to process all the data associated with the wind
turbine rotor. The input to the program is a file, DSS2.INP, which contains
data pertinent to the rotor and the operating conditions. The major task of
this program is to relieve the user from having to generate the the large
number of constants needed for the simulation. The output file, DSS2.0UT,
contains an echo of all the input data, and a listing of the generated
constants. The other two output files, DSS2.SNG and DSS2.TBL, also contain
the same information, for use by the WEST load module.

WEST .CON

This file contains all the constants pertaining to the subsystems,
other than the rotor, i.e., Air Mass, Tower, Power Train, and Control
System. WEST.CON is directly input into the load module, WEST.

CONVRT:

The task of this program is to convert the data base representation
(see Section 3.4 and Appendix F) of the variables and constants used in the
simulation into standard FORTRAN programs. By using the system software of
the DEC PDPll computer, these FORTRAN programs can then be compiled and
linked to yield an executable load module, WEST.
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ROTOR PHYSICAL CONSTANTS DATA BASE: VARIABLES/CONSTANTS
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Figure 5.1. Generation of Scaled Constants: PREPROCESSOR
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As an example, a typical data base representatation of a variable is,

KGE : 20.0 : MR / RAR
CONSTANT IN THE GIMBALL SERVQO INTEGRATION FORMULA

where MR is the reference moment, and RAR is the reference 1linear
acceleration; both are defined in the output file DSS2.SNG. Here, the scale
factor is 20.0, and the normalization factor is (MR/RAR). The CONVRT

program will convert the data base representation into a FORTRAN arithmetic
expression,

KGE = 20.0 * MR / RAR

The input files XXX.VAR and XXX.CON contain, respectively, the
definitions of the variables and constants in the simulation (see Appendix
F). The output files XXX.XOR and XXX.HDR together constitute the FORTRAN
program containing arithmetic expressions, such as the one shown above for
the constant KGE. Also, there is a third output file, WEST.VNM, which
contains a list of the variables and constants.

COMPILE and LINK:

These steps of compiling and linking, to get the executable load
module, WEST, are straight forward uses of the DEC computer's system
software.

WEST

This is the executable load module, which does the actual conversion of
the physical constants in the files, DSS2.SNG, DSS2.TBL, and WEST.CON into
a form which can be downloaded into WEST-3. The output file WEST.VTX is a
listing of all the scaled constants, for the user's reference. The same
information is contained in XXX.VSV, in a binary format, for efficient
processing by the WEST-3 system software,

SIMCON.OBJ

This is library of several special purposes subroutines which have
been coded for use by the programs, DSS2, CONVRT, and WEST.
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6. WEST-3 SYSTEM SOFTWARE

After the simulation model and the scaled constants have been prepared,
the next step in the simulation process consists of using the WEST-3 system
software to generate the executable code which can downloaded into WEST-3.
From the inception of the design of WEST-3, it was recognized that having
adequate system software was the key to making the system friendly to the
user, and hence increase the usefulness of the system. The system software
that has been developed for WEST-3 is fairly standard, in the sense that,
the process of generating the executable code is similar to that in any
other computer. A schematic of the WEST-3 system software can be found on
page 1-2 of this report in Figure 1.1 of Section 1. Presented in this

Section are brief descriptions of the various components shown in Figure
1l.1.

The scaled simulation model consists of a set equations which are coded
in a subset of ANSI FORTRAN, the computer language used widely in
engineering applications. At present, the subset consists of the following:

1. arithmetic expressions
2. logical IF statements

3. GO TO statements

4. CONTINUE statements,

5. COMMON block definitions
6. FUNCTION subprograms

7. SUBROUTINESs,

This subset of FORTRAN has been found to be adequate for application to
wind turbine simulations. Due to the modular design of the system software,
future enhancements to the Translator can be readily incorporated. It
should be emphasized that the user is not required to code the simulation
model in the machine's native assembly language; programming in the
assembly language is a nontrivial process.

The Translator converts the scaled model into WEST-3 assembly language
mneumonics. The Assembler converts the output of the Translator into an
Object Code suitable for processing by the Linker. The role of the Linker
is traditional, in that it generates an executable Load Module by combining
several Object Code modules; typically, a main program and several
subroutines. The Translator, the Assembler, and the Linker constitute the
bulk of the system software for WEST-3. For debugging purposes, several
files, such as memory maps, are also generated while processing through the
software.

The Loader performs task of loading the merories of a Computational
Unit: the instructions (Load Module) into the Insruction Memory (IRAM), and
the scaled constants into the Processing Memory (PRAM). The Loader has been
designed to be as user friendly as practicable. For example, the choice of
which Computational Unit is to be 1loaded, the 1list of input/output
variables, configuration of the serial ports are all definable by the user
at the time of loading.

Several utility programs are also available for debugging. Among other
things they provide for the display of internal buses in a Computational
Unit, single stepping through the program, and peek/poke capabilities.
These utilites are invaluable for detailed debugging, when needed.
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7. CONCLUDING REMARKS

As part of the WEST-3 development process, validation of WEST-3 was
successfully completed by conducting simulations of the MOD-0 wind turbine.
The validation exercise served to prove the WEST-3 system, both hardware
and software. The exercise was also invaluable in providing direction for
enhancing the utility and user friendliness of WEST-3. As a result of the
experience gained during the development of WEST-3, the following efforts
are either underway, or planned for the near future:

l.

The method of coupling the rotor model to the power train and the

tower models needs to be reexamined; reformulation of the presently
used procedure may be indicated.

A more compact version of the existing preprocessor programs used
for preparing the constant data needs to be developed.

Extensive scaling of the simulation model, mandated by the fixed
point nature of WEST-3, is a tedious and time consuming task. To
eliminate the need for scaling, a 32-bit floating point system has
been designed. Breadboard verification of a single Computational

Unit is under progress, and a full system is expected to ready for
use early in CY 1986.

To significantly improve the user friendliness of the systenm,

development of a new suite of system software is underway for the
floating point system. The user will be able to write programs in
the ANSI FORTRAN-77 language; presently, only a subset of the
language is permitted. Further, the user will have access to many
more debugging tools than are available at present.
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This appendix is provided to clarify terms and define fundamental
methodology incorporated in the analyses presented throughout this
document. It is not intended to be comprehensive treatise on the methods of
vector and matrix analysis. Portions of the appendix are tuitorial in
nature to serve the purposes of definition and clarification, but a basic
knowledge in the areas of vector and matrix algebra and calculus on the
part of the reader is assumed.

A comprehensive analysis often involves many systems and system
components which require the general methods of mechanics. Motion entities
must be carefully defined and processed, and many transformations are
required. Hence, it is the purpose of this appendix to define uniform
conventions for these processes. Included in such definitions are:

* Definition of standard terms.

* Rigorous definition of coordinate systems, including shorthand
acronyms for each to simplify categorization and documentation.

* Derivation of standard coordinate-transformation procedures and
nomenclature.

* Definition of shorthand notations for use in rigorous definition of
the various motion entities.

A.l Definitionslgg Terms

This subsection serves to clarify the various terms applied throughout
an analysis, particularly as regards the definition of motion entities.

A motion entity is a position, velocity or acceleration. Motion
entities are generally expressed in either vector or vector column (matrix)
form.

A.l.l vectors

A vector is used in vector mechanics to relate the positions or motions
of two points. The vector can be translational (e.g., a position vector, or
translational velocity) or rotational. A vector requires three specific
definitions. To avoid confusion, one should specify these three definitions
with checklist reliability:

l.--What type of vector is it (position, velocity, acceleration,
translational, rotational)? This will be called the type (T) of
vector.

2.—-What is being 1located, or what is moving (point, axis system,
etc,)? Call this item the subject (8).

3.—-With respect to what (axis system, point, etc.) is the subject
located or moving? Call this base (B).




For example, if one is defining the velocity vector V*, the checklist
would require language such as

"V* is the translational velocity [l. type] of aircraft c.g. axes [2.
subject] with respect to inertial space [3. base]."

Vectors are rather abstract in that they do not require Resolution (R)
for their definitions; i.e., a specific coordinate system need not be
defined in order to rigorously define a vector entity. Vectors are simply
"arrows" in space between point pairs, and represent whatever the analyst
wishes to assign them.

A column vector or column matrix is numerical representation of a
vector. The column vector is a group of numbers called "elements"; each
represents a component of a vector resolved to a specific coordinate
system,

Hence, the column vector requires a fourth item in the definition
checklist, which is

4.--With respect to what axis system is the entity Resolved (R)?

As an example, let v be a column vector representing the vectorial
entity V*, discussed previously. Then a proper definition of v would be

"v is the translational velocity [1l. type] of aircraft c.q. axes [2.
subject] with respect to inertial space [3. base], resolved to c.g.
axes [4., resolution}.”

If any of these four key definitional items is not clearly indicated,
then the column vector is essentially undefined and much confusion and
error can result. This particularly is true when computer algorithms are
used to solve for vector entities. It is the author's experience that poor
definitions of motion entities and coordinate systems are the primary
causes of errors in computer dynamic analyses.

A.1.2 Time Differentiation

As is well stated in standard texts on mechanics, careful definition of
time differentiation is required. When the derivative of a motion entity is
taken with respect to time, the specifc coordinate system in which the
derivative is taken must be specified. This, of course, is because the time
derivation of motion entity is different among coordinate systems which
accelerate with respect to each other.

Derivatives of vectors are therefore seen to require a fifth
definition: the axis system with respect to which the differentiation is
taken. Call this the differentiation base (D) for the derivative vector.

A.l1.3 Scalars
Vectors have directorial properties as described above, but scalars do

not. A vector is represented by a group of numbers whereas a scalar is
represented as a single number.



The mass of a body, for example, is a scalar entity. The velocity of
the body would be represented by a vector. The magnitude of the vector is a
scalar.

A vector can be expressed as the vector sum of three orthogonal
vectors. The orthogonal vectors are parallel to the axes of some defined
orthogonal coordinate system. The magnitude of the orthogonal vectors are
scalars. These scalars are stacked in a column to become the "elements" of
the matrix or "column-vector" representation of the vector.

The matrix representation of a vector -a group of scalars- is a very
convenient vehicle for use in computer implementation of vector processes.

A.l.4 Operators

Rectangular arrays of scalars can be defined as "operators". These
operators can be added and multiplied in accordance with specific rules
defined for such operations.

In vector analyses, such operators are often called "tensors" or
"second-order tensors". They arise naturally in the derivation of the
rotational equations of motion for rigid bodies; in this form they are
often called "inertia tensors". Another term sometimes given to the
second-order tensor is the "diadic product”.

Square matrix operators are also used for various transformation
procedures. Such transformations are the subject of later sections of this
document.

A.l.5 Nomenclature Conventions

Conventions are defined below which can be used to derive and document
dynamics analysis equations. The conventions have been defined for
convenient incorporation into computerized systems including word
pProcessors.

In order to use computer systems to store and print dynamical
equations, some ground rules are needed which are somewhat different from
expressions. The ground rules of this type used herein are:

* Greek or other nonstandard characters are not used.

* Groups of standard graphics characters are used to form some special
symbols (e.g., the integral sign).

Equations can be formed on a computer-driven printer if
super-scripting, sub-scripting and backspacing are allowed, and if the
printer can process all characters in a full ASCII set. Many printers are

available that can do this. Table A-1 presents the full ASCII character
definitions.
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With these ground rules already stated as a gquide, the following
specific nomenclature definitions can be made:

* Scalar entities are represented by groups of characters beginning with an
upper-case letter. These are sometimes called "zeroth order tensors".

Examples of scalar nomenclature:

Sy oV oM, M, W(S)

* Column vector entities are represented by groups of characters beginning

with a lower-case letter. These are sometimes called "first order
tensors".

Examples of column vectors are:
vb,wa,b , u(s)

Note the functional dependency on the scalar parameter, S, in the last
example, above,

* Second-order matrices can be viewed as operators on vectors or operators
on the other second-order matrices. These are often called "tensors" or
"second-order tensors" in dynamic analyses. Such entities are represented
by groups of characters beginning with an upper case letter and ending
with a period. The period distinguishes the operator from a scalar.

Examples of operators are:

R. , X F

3° 7 Cave

Note the functional dependence of the X. operation on the vector v in the
last example, above.

’ X(v).

* Time derivatives of entities can be represented in a number of ways.
Superscript dots and primes are often used to denote differentiation with
respect to time and space (i.e., some nontime parameter), respectively.
Differential notation is also sometimes used, e.q.,

d (v) /4t

for differentiation of the item in parentheses with respect to the
scalar, T.

In the present conventions, the superscript dot is used to represent time
differentiation with respect to the axis system of resolution. For
example, if v is a velocity resolved to, say, coordinate system RAX, then

v' is the time derivative of v taken with respect to RAX.

Not withstanding this convenient nomenclature, clear and specific
"checklist" definitions should be given in all derivations defining the
differentiation base.




* The symbol for integration is
_/‘g Ids,

for integration of the interand I with respect to S between boundaries a
and b,

The summation process is indicated by, for example:
sV s,
-i"i

where the scalars Si are summed for i = 1,2...N.

* If a vector is to be defined from a group of scalars, it is convenient in
printed material to show the column vector as a transposed row vector.
For example:

T

V=(‘]1’V2,V )

3

defines a column vector as composed of three scalar elements V y V, and

V, . Superscript T denotes the transpose of the row vector to pr%duc% the
cglumn vector,

* Identity vectors and operators are often needed in an analysis., The
following conventions are therefore defined, for convenience.

identity vector:
i=@,1, 17T

specific identity vectors:

. T
i, = (1, 0, 0)
. T
12 = (0’ l, 0)
i3 = (0, 0, 1)*

The identity operator I. is defined as a diagonal square matrix with
unity elements on the diagonal and all other elements zero.

Specific identity operators can be defined as were the specific identity

vectors. For example, I,. is a matrix of all zeros except for unity in
the second diagonal position.

A2 Coordinate System Definitions

A.2.1 General Conventions

As in the case with motion entities, rigorous definition of coordinate
systems is required if an accurate dynamic analysis and subsequent computer
implementation are to be accomplished.



For motion analysis, the standards used herein for coordinate systems
incorporate:

* Right-handed orthogonal systems
* gSpecific axes in a coordinate system numbered 1, 2 and 3.

For example, if the column vector v is expressed in three elements
resolved to the axes of a particular coordinate system, then the elements
will have notation V., V. and V, . Note the upper case notation, since the

elements of a column ecé%r are scalars.

A.2.2 Abbreviations for Coordinate Systems

Many coordinate systems are usually required in a dynamic analysis.
Abbreviating their full names 1is very convenient, especially in the
checklist definitions of the various entities used in the analyses.
Abbreviations take such forms as RAX for "rotor axes", IAX for "inertial
axes", etc.

A.3 A shorthand Notation for Entity Definition Checklists

The previous sections have expressed the powerful need for careful and
comprehensive definitions of motion entities in dynamic analyses. Most
motion entities require four items in the specification 1list: type,
subject, base and resolution. Derivative entities require a fifth
specification, the axis system in which the derivative 1is taken: the
differentiation base.

Force and moment vector columns need type, subject (point of
application) and resolution specifications.

A shorthand notation can be defined which simplifies laborious
definitions for all items in an analysis. The shorthand also is a tool for
discipline--it can be incorporated in each entity definition as a standard
procedure, so that its presence assures proper and complete definition of
each item used in an analysis. Consider the shorthand nomenclature

T: ,8$: ,B: ,R: r D ¢ .

abbreviations of various items are substituted where the "underline" areas
appear in the suggested nomenclature. With the exception of the "type" part
(T:) of the shorthand specification, the abbreviations usually refer to
coordinate systems.

An example specification is

T:XV, S:CAX, B:IAX, R:CAX

Such a specification may apply to the vector, say Vo In this case, v
is a translational velocity of center-of-gravity axes  (CAX) moving wit
respect to inertial axes (IAX) resolved to CAX. If a differentiation is

involved, a fifth item is added. For example, v£ would be specified:

T:XV, S:CAX, B:IAX, R:CAX, D:CAX
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In this case, the dot denotes differentiation with respect to time taken in
the CAX system. Note that the type specification refers to the
undifferentiated vector, in this case v_ . The dot is viewed as an
operation on the entity, but the type of eﬁiity does not change because of
the indicated presence of the operations.

To further aid in the shorthand process, the following abbreviations of
entity types is suggested.

XP Translational or linear position - a position vector
RP Rotational position: 1i.e., an angular vector
XV Translational velocity

RV Rotational velocity

XA Translational acceleration
RA Rotational acceleration
F Force
M Moment
A.4 Operations on Scalars, Vectors and Operators

Standard texts on tensor mechanics define the types of operations that
can be performed with scalars, vectors and tensors. Some of these
operations are summarized below for completeness of this document, as they
apply to the matrix representation of scalars, vectors and tensors.

A.4.1 Operations on Scalars
Straightforward arithmetic operations include addition, subtraction,

multiplication, division; standard operations of the calculus include
differentiation and integration

A.4.2 Operations on Vectors

Column vectors can be added and subtracted by performing scalar
additions or subtractions of their elements. If a and b are vectors

_ T T
a+b=(A ,A ,A) + (B ,B,, By (A4.1)

T
(Al +B, , A  +B A, + B3)

1 2 2" 73

The process of subtraction is identical.




Two types of vector products are defined, one which results in a scalar
and one which results in another vector.

The scalar product is the product of the magnitude of two vectors times
the cosine of the angle between vectors. For column vectors, the scalar
product is the sum of the products of the elements. For the example vectors
a and b previously defined, the scalar product is

S, =A B, +A B, + A, B, . (A4.2)

ab 171 2 2 373
another form of this expression is

_ T
Sab =a b (A4.3)

where aT is a row matrix formed by transposing the a column matrix.

sab = Sba (Ad.4)

The vector product or "cross product" of two vectors is defined as a
vector normal to the plane created by the two vectors being multiplied,
with a magnitude equal to the product of the individual magnitudes times
the sine of the angle between the operand vectors. If the two operands, say
a and b, are column vectors, the cross product is conveniently expressed
using a special cross operator,

Vab = cross product vector = X{(a).b

where the skew-symmetric matrix operator is defined

X (a). = A 0 A (A4.5)

One important property of the cross product operation is expressed as

X (a).b=-X (b)), a =X (-b). a (A4.6)
Another property is

X (a). a = 0 for all a. (A4.7)

The argument indicated for X. in the definitions presented above is a
vector. The argument can also be a scalar if X. carries a subscript
indicating which positions the scalar is to occupy. Note the equivalence of

the following situations in this regard:

X, (a). is equivalent to X (a). with a = Aii
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Other useful relationships associated with the cross product operator
involve triple products:

_ T _ T _ -
X (a). X (b).c = (a~ ¢)b (a~ b)c = Sac b sabc (A4.8)
X (a). X (b). X (a). = -a b X (a). = -5, X (a). (A4.9)

These relationships can be proven by processing the matrices and comparing
results—--element be element.

Division of vectors is generally not defined.
A.4.3 Operations on Second Order Tensors

Tensors are added and subtracted by element, as are vectors. Two
operand tensors so processed must, of course, have the same dimensions
(same numbers of rows and columns); the tensors need not be square.

Multiplication of tensors can occur in the form

A. = B.C. (24.10)
but B. must have the same numbers of columns as C. has rows. If B. has i
rows and j columns, and C. has j rows and k columns, then A, is of

dimension i by k.

In general, the tensor product is not commutative, so B.C. is generally
not equal to C.B.

A tensor can premultiply a vector to produce another vector, as in

a =G.b (24.11)
This form is the standard form used in transformation procedures, where a
vector resolved to one coordinate system 1is converted to a column
representing the same vector resolved to another system.

Division of a tensor can occur if it is square and nonsingular. The
process is called "inversion" in the matrix vernacular, and is denoted
herein with superscript negative one (-1). If the inverse of a matrix, say
M., exists, and

a =M.b (24.12)
then
-1
b=M. "a (A4.13)

The rules and methods associated with inversion are many: expression of
these is beyond the scope of this document.

One rule on tensor products worth noting here is
.87 = 8.7 a7 (A4.14)

where superscript "T" denotes the transpose.
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A.4.4 The Calculus of Scalars, Vectors and Tensors

Scalars, vectors and tensors are called matrices, when expressed as
arrays of scalar elements. All matrices can be differentiated and
integrated by element. For example, the derivative of a column vector with
respect to some parameter, say S, 1is vector whose elements are the
derivative of the original vector elements with respect to S.

A.5 Standard Rotational Coordinate Transformations

Transforming motion and loads entities form one coordinate system to
another is one of the most common procedures performed in solving dynamic
system equations. Standardizing these processes, and using uniform
notation, reduces the probability of error to a considerable degree. Also,
standardization leads to relatively "clean" notation, simplifying the tasks
of technical documention and computer coding.

In the author's experience, the poor and nonuniform selection of
notation is a primary cause of error, second only to poor definition of
motions entities and axes. Poorly designed notational systems lead to
excessive use of multiple subscripts, superscripts, primes, hats, bars,
etc., which lead to typographical and computer coding errors.

The purpose of this subsection are to define standard coordinate-
transformation methods and to specify uniform nomenclature conventions for
such processes.

A.5.1 Resolution Transformations

Since vectors do not require resolution, their definitions are not
affected by coordinate frames not being parallel. Column-vectors, however,
do require resolution for their 'definitions, and therefore require
transformation.

Suppose, for example, that r is some position column vector, resolved
to the a axis system (AAX), and r8 is a column vector representing the same

entity as Ly but resolved to the b axis system (BAX). Then

r, = R.T (A5.1)

where R, is a 3 x 3 rotational transformation matrix. R. will be the
identity matrix if the a and b axis systems are parallel.

The R, array is also called the matrix of direction cosines.
Many methods are available for calculating the matrix, R. . One
convenient method was developed by Euler, and involves synthesizing R.

using the product of three arrays which are easy to derive and remember.

Suppose one starts with AAX, and rotates about this system's number 3

axis an angle, Y. . A new system emerges; call it system x. Figure A.l
shows the process.
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First )
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System

Figure A.1l Number 3 Axis Eulerian Rotation

Direct inspection of Figure A-l1 reveals that, if Ral ’ Ra

and Ra3 are
elements of the column vector ra , resolved to AAX, then

2

RXl = Ral cos Y3 + Ra2 sin Y3
sz = --Ral sin Y3 + Ra2 cos Y3
Res = Ra3
or in matrix notation
r =R (¥,)). r (A5.2)

X a3 3 a

the number 3 rotation matrix is defined

cos Y3 sin Y3 0
R3 (Y3). = | ~sin Y3 cos Y3 0 (A5.3)
0 0 1

Subscript 3 was used on R. to denote rotation about the number 3 axis.

Now, without trying to envision the complete process in space, simply
study the rotation from the x system to the second generation system, say Yy
axes; the rotation is now about the number 2 axis of the x system and
through an angle, Y, . A figure similar to Figure A.l can be prepared and
the transformation® equations again written by inspection. The result
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r, = R2 (YZ)' L, (A5.4)

Y
where
cos Y2 0 -sin Y2
R2 (Yz). = 0 1 0 (A5.5)
sin Y2 0 cos Y2

A similar process is followed for rotation about the number 1 axis of
the y frame, through the angle Y, , to produce the third-generation system.
if Y, , ¥, and Y., have been selécted properly, the third-generation system

will3be tﬁe b sy%tem. Hence

I, =R (Yl). ry (A5.6)
-_—1 0 0 i
Ry (Yl). = 0 cos Y, sin Yl (A5.7)
0 -sin Yl cos Yl

Combining Equations A5.2, 4 and 6, one sees that
rb = Rl . R2 . R3 . ra (AS5.8)
and by comparison with Expression A5.1

R. = R1 . R2 . R3 . (A5.9)
(The arguments in the rotational arrays have been dropped in Expressions
A5.8 and 9 for convenience.)

Equation A5.9 follows from Statement A5.8 since the elements in r are fully
arbitrary.

It should be noted that, one axis system can be rotated to another by a
series of separate rotations in any order. The 3-2-1 convention is standard
in rigid body analysis such as used for aircraft simulation, but any number
of rotations about axis numbers in any order can be used. Note that the
orders and numbers of rotations only affect the definitions of the selected
angles, The term "Euler angles", however, usually implies the order 3, then

2 and then 1, so that values specified for Euler angles carry this implied
order.

This system for synthesizing R. is convenient because the individual
(single-axis) rotations are easy to derive, easy to memorize, and
convenient to synthesize from design drawings presented as orthographic
projections. An important property of the orthogonal rotation matrix is

- T -
Ri (Y). = Ri (-y). (A5.10)
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where i can be 1, 2 or 3. This property can be observed by inspection of
Definitions AS.3, 5 and 7. Also, by direct calculation, it is easy to show
that

-1 _ T
Ry, = Ry, (A5.11)
A.6 Translational Transformations and Relative Motions

A.6.1 Motion Transformations

Relative transformations arise when motion and load entities are viewed
from different coordinate frames (axis systems). For example, Figure A.2
shows the a and b axes (AAX, BAX), and a point P located positionally with
respect to AAX by the vector p_ . P is located with respect to BAX by p and
BAX are located with respect %o AAX by b. If all three of these position
vectors are resolved to the same axis frame, then

p,=b+p (26.1)
P
Definitions
p
Pa p, - T:XP/S:P/B:AAX/R:BAX
P - T:XP/S:P/B:BAX/R:BAX
b - T:XP/S:BAX/B:AAX/R:BAX
/ ~. & v_ - T:XV/S:P/B:AAX/R:BAX
/ L \;\.\ vl - T:XV/S:BAX/B:AAX/R:BAX
AAX l b /BAx LA T:RV/S:BAX/B:AAX/R:BAX

Figure A.2 Relative Locations of a Point, P.

The translational velocity of P with respect to AAX is calculated by
simply time-differentiating Equation A6.1.

vp =d (pa) /4T = d (b) /4T + 4 (p) /4T (A6.2)
where the derivatives are taken in AAX. If p° is the derivative of p taken

with respect to time in BAX, then a major theorem in vector analysis states
that

d (p) /AT = p° + X (wb). P (26.3)

where w, 1is the rate of angular rotation of BAX with respect to AAX,
resolveg)to BAX.

A special condition arises when P is fixed with respect to BAX; for
instance if BAX are fixed to a rigid body and P fixed to the same rigid
body. In this case p° is zero and Equation A6.2 and 3 can be combined to
yield

vp =v, +X (wb). p (A6.4)
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where v, is a direct substitution in notation for 4 (b) /dT. Equation A6.4
can be rfecast using Formula A4.6

vp = vy + X (-p).wb (A6.5)

where now the cross product matrix X. is a constant because P is constant
with respect to time (when viewed in BAX).

Equation A6.5 is essentially a translational transformation expressing
the velocity of a point P, which has been translated from BAX the constant
p, by transforming known BAX motion entities b and Wy

The second derivative of p_ with respect to time taken in AAX is also
of particular interest. If AAX 1s a Newtonion frame (i.e., AAX are fixed to
the stars), then this second derivative becomes the acceleration of P. The
second derivative is achieved by differentiating Equation A6.2 in AAX:

d (vp)/dT =d (vb) /4T + 4 (p°) /4T
+ X (4 (wb) /aT). p + X (wb). d (p) /4T (26.6)

Equations A6.3 can be applied to items in Equations A6.6 that involve
differentials.

d(p") /dTr=p"" + X (wb). p’
d (wb) /4T = wb' wb

Noting that X (w ). w_ is identically zero, the individual differential
equations can be used to Fewrite Equation A6.6 in the form:

+ X (wb).

d (vp) /4T = 4 (vb) /4t
+p°° +2X (wb). p’ + X (wb'). p + xz(wb).p (26.7)

Equation A6.7 is called the Coriolis theorem and is used extensively in
Newtonian dynamic analysis.

Equation A6.5 can be differentiated in BAX to vyield another
transformation. If P is fixed in BAX, this result becomes

vp =V

Equations A6.5 and A6.8 transform motion entities associated with BAX
(moving with respect to AAX) into entities associated with P (moving with
respect to AAX). Note that these transformations yield the translational
motion entities for P. Rotational transformations are trival, since

+ X (-p). wb' (A6.8)

wp = Wy, (A6.9)
wp =W, = d (wb) /4T (A6.10)
In summary, key motion entities expressed for BAX moving with respect

to AAX can be transformed to the same types of motion entities for point P
which has been translated for BAX by the constant vector p. The necessary
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transformation equations are Expressions A6.5, 8, 9 and 10 which are linear
because p is constant.

A.6.2 Loads Transformations

Consider loads entities defined as follows:

f - T:F/S:P/R:BAX
m - T:M/S:P/R:BAX
fb - T:F/S:BAX/R:BAX
m - T:M/S:BAX/R:BAX

The column vectors f and m represent force and moment loads applied to P.
The theory of statics shows that these apply equivalent loads acting at BAX
given by the expressions

fb =f (A6.11)

g

Equations A6.11 and 12 essentially transform f and m to act on a translated
system, BAX. These transformations are analogous to motion entity
transformations given by Formulae A6.5 and A6.8.

m + X(p).f (A6.12)

Rotational transformations used to change the resolution of a column
vector work the same on loads columns, of course, as they do on motion
entity columns.

A.7 Derivation of the Rigid Body Equations of Motion

The relationships presented in previous sections can be used to derive
the general rigid-body equations of motion. Consider BAX of Figure A.2
fixed to the body. Let dM be an infinitesmal portion of the body mass
loacated at point P.

The Coriolis theorem (Equation A6.7) states the acceleration of the
mass under force dfb, so that Newton's second law of motion is expressed

dfb = dM d(vp) /dar (A7.1)

If the force dfb is integrated throughout the body, the total force is
calculated

. 2
fb =M d(vb) /4T + (x(wb Y. + X (wb).)pm (a7.2)

where constant zeroth and first moments of mass are defined

M= _/,dM (A7.3)
Pp = /y PM (A7.4)

The integrations are taken throughout the entire volume (V) of the body. If
Bax are located at the body's center of gravity, then Pn vanishes.
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Equation 26.12 shows that the moment at BAX due to force df on dM is
dmb = X(p).daf

Using the Coriolis theorem again with Newton's second law, and integrating
throughout the body.

. - 2
m, = X(p).d(v)/AT + I .w " + /X" (w).pdM (A7.5)
where the second moment of mass or the inertia tensor is defined
__ o g2
Im. = _/ v X" (p) .dM (A7.6)

The integral term in Equation A7.5 can be rearranged to more convenient
form, so that the final rotational equation of motion is expressed

m, = X(pm).d(vb)/dT + Im.wb' + x(wb).Im.wb (A7.7)
The rearrangement of the integral term is justified by applying the triple
product relationship A4.8 to both forms used above, which will reveal the

equivalance of the two formulations.

The term Im. is the body angular momentum

“b

h = ISR (A7.8)
So that the moment applied at the body center of gravity is the time
derivative of the angular momentum (derivative taken with respect to
inertial axes). Thus

dh/dT = h" + X(wb).h (A7.9)
by application of Formula A6.3, so that Equation A7.7 becomes

m, = X(pm).d(vb)/dT + dh/dT (a7.10)

The center of gravity of the body is located with respect to BAX by the
vector cg, so

cg = pm/M (A7.11)

With this definition the force and moment Equations A7.2 and A7.7
become

£, = Md(v,)/dT + (X(w ). + Xz(wb).)cg) (A7.12)

m + Mx(cg).d(vb)/dT + Im.wb’ + x(wb).Im.wb (A7.13)
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A.8 Derivatives.gg Euler Angles

Subsection A.S5 presents the Euler method for synthesizing the matrix of
direction cosines used to change the resolution of a vector. For many
dynamic analyses it is necessary to relate the time derivatives of the
Euler angles to the rotational velocity of a coordinate system.

For example, let a be the column vector formed of three Euler angles
needed for the direction cosine matrix between AAX and BAX of Figure A.2.
Place the number-1 rotation as A r the number 2 rotation as A2 etc.

If BAX has the rotational velocity w_ with respect to AAX, this
velocity will give rise to dynamic Euler angfbs, a' . A relationship can be
derived between w,_ and a‘ by viewing each element of a° , on at a time, and

then by resolving these independent rate components to BAX. If W.. is
defined Y

W = Wy.a (a8.1)
then the transformation is expressed

W .=1I,. +R.I.. +R .R..I (28.2)

y 1 1°72 1°72°°3°
where individual Eulerian rotation matrices are used to resolve each Euler

rate element to BAX. The partial identity arrays I.. are used for
convenience in selecting the desired elements of a in ExXpression A8.2.

The array W _. can be inverted by expanding Equations A8.1 and 2 and
solving for a' .“This process reveals the inverse of wy. to be

1 tan A, sin A

tan A cos A

2 1 2 1
-1 _ i
Wy. =10 cos Al sin Al (A8.3)
0 sin Al / cos A2 cos Al / cos A2

which can be confirmed by multiplication with A8.2 to vield the identity
matrix.
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The purpose of the analysis presented in this appendix is to derive a
mathematical model for an aeroelastic rotor system. The model is intended
to be applicable to rotors with very rigid blades (such as propellers) or
rotors which have limber blades (such as helicopter and wind turbine
rotors) where blade elastic motion has a significant effect on system
operation.

The math model derived herein is intended to be incorporated into
larger analyses, so that it becomes a component of a total simulation
model. The rotor math model is needed to calculate the loads applied to the
rotor supports by the blades, given the motion of the supports and control
variables input to the rotor models.

The aeroelastic rotor analysis has been derived using procedures
originally presented in Reference 5. The analysis presented below is
complete, however, and should not require references other than standard
texts on mechanics.

The models are derived viewing the rotor blades as massless elastic
beams to which are attached blade "elements". Each blade element has an
infinitesmal radial dimension, and is treated as a rigid body shaped as an
airfoil. The blade element generates loads which are applied to the
massless beam portion of the model, to complete the derivation of the
partial differential equation representing the aeroelastic properties of
the blade.

The D'Alembert approach to Newtonian dynamics is taken, where mass
times acceleration is negated to become an apparent force applied to the
massless structure, The acceleration of the blade element is calculated
given the motion entities for the gimbal ring and the flexible motions of
the massless beam. This acceleration applied to the inertial properties of
the element is given a negative sign to become the "inertial loading" of
the blade.

The aerodynamic environment in which the blade element is operating
(i.e., the airspeed, Mach number and angle of attack) is calculated in the
analysis. It is presumed that some aerodynamic definition for the blade is
defined, usually in tabular form, that will produce the nondimensional
aerodynamic loading coefficients (lift, drag and moment coefficients) as a
function of the aero environmental parameters. The coefficients are then
further processed to yield dimensional loads applied to the element due to
aerodynanics.

The inertial and aerodynamic loads are summed for all elements in the
model to produce forcing functions which act on the blade flexibility
characteristics, and which also sum to the final loads applied to the
gimbal ring by the blades.

The blade motion problem is of particular importance in rotors with
limber blades. The "modal" analysis method is used herein, where the basic
blade model derived as a mass-elastic continuum is transformed to "normal
coordinates" which are functions only of time. This approach minimizes the
number of degrees of freedom that must be incorporated in an analysis to
calculate blade motions within a prescribed accuracy. The method is to be
distinguished from the "nodal" method used in some analyses, which requires




many more degrees of freedom than the modal analysis to achieve the same
accuracy.

Further sections of this derivation contrast the modal and nodal
methods of structural analysis in more detail.

A primary difference between the material presented below and that of
the references is nomenclature. The nomenclature is all new and has been
prepared for ease in word processing and data base management systems. The
nomenclature has also been defined so that it relates very closely to
program instructions that are actually executed by computer.

Appendix A describes the nomenclature conventions used throughout the
analysis. In addition, a number of analysis methods are defined in Appendix
A that are used throughout the presentations below without further
definition.

Table B.l defines the nomenclature used in the derivations below.

B.l Fundamental Approach~ Coordinates

A major portion of the analysis simply involves definition of suitable
coordinate systems followed by routine application of the methods
documented in Appendix A. Table B.2 summarizes the coordinate systems used
throughout the presentations.

The analysis begins with the definition of a "reference point" which
lies on the rotor shaft centerline near the center of the rotor hub. A
nonrotating coordinate system called "hub axes" (HAX) has its origin at
this reference point. The motions of HAX with respect to the stars (called
"inertial axes" herein- IAX) are taken as given entities to the rotor
analysis. These motions are to be given as translational and rotational
inertial velocities, and the time derivatives of these entities taken with
respect to hub axes. Additionally, the translational and rotational
velocities of HAX with respect to the air mass in the vicinity of the rotor
are also given to the analysis.

The "rotor axis system" (RAX) is defined with its origin and number-3
axis coincident with the corresponding HAX entities. RAX spin with the
rotor, however; they have a rotational rate of 2 radians per second with
respect to HAX- the spin vector being coincident with the number-3 axes of
HAX and RAX. For consistency with past nomenclature conventions, a positive
Z 1s associated with RAX moving with respect to HAX about the negative
number-3 axis. If z is the rotational vector representing the rate RAX
moves with respect to HAX, then z is defined

z = (0,0,-2)7 (B1.1)
The spin acceleration nomenclature used herein is 2°.

The analysis assumes that a gimbal system is installed between the
shaft and an outer gimbal ring. The blades in the rotor are rigidly awnred
to this outer gimbal ring. The gimbal analysis defines the motion of this
outer gimbal ring with respect to hub axes, to that outputs from the gimbal
analysis are inputs to the rotor blade analysis. The gimbal system may be



of any configuration such as teetering (see-saw rotors) or floating (e.g. a
ball joint).

Appendix C presents the gimbal analysis. The gimbal equations transfer
the motion entities of hub axes to "shank axes" SAX, and then transfer
forces and moments applied .to the gimbal ring by the blades back to hub
axes. Viewed in this way, the gimbal analysis is an interface between the
rotor (including the outer gimbal ring) and the rotor support system which
defines the motions of HAX.

The shank axis system for a blade is fixed to the outer gimbal ring. If
the gimbal is undeflected, the number-3 axes of hub and shank axes are
considered coincident, as are the origins. A separate shank axis system is
defined for each blade in the rotor, so that each blade shank lies at the
origin of its associated SAX system. The projection of the blade on the
shaft normal plane lies generally along the negative number-1 SAX axis, to
conform to conventions of previous rotor analyses.

Since the analysis of Appendix C has treated the transformations
through the gimbal interface, the task of this present document involves
the analysis of the blades mounted to the gimbal ring. The objective is to
calculate the forces and moments (i.e., the loads) applied to the support
system located at HAX by the rotor system, given the HAX motion entities,
the rotor spin rate and acceleration, and the controls applied to the
system.,

B.2 BRlade Coordinates

Aeroelastic rotors are so called because the blades deflect enough to
change the loads to a considerable degree. Accordingly, it is necessary to
calculate the motions of the blades before the loads can be computed. These
motions must be defined in terms of suitable coordinates.

Figure B.l1 shows the major coordinate systems incorporated in the
aeroelastic blade analysis. The shank axes are depicted toward the hub end
of the system. The "blade reference line" (BRL) moves along the span of the
blade, being defined by the locus of all points "P", one of which is shown
in the Figure.

by BLADE
REFERENCE
LINE

(BRL)

BLADE AXES
(BAX)

Blade Element

SHANK
3  AXES (SAX)

Figure B.l Blade Reference Line Geometry




The BRL can be located within each section of the blade at any
arbitrary point. The quarter-chord point is often chosen because this is
the aerodynamic center for conventional airfoils. Other points (for
example, the 1locus of blade-section centers-of-gravity) could also be
chosen.

The BRL is defined as made up of specific mass molecules located in the
blade. This abstraction allows the definition of a line coordinate, §,
which will always be bounded between 0 and the total length or radius of
the blade, say R. When the blade is under loading it can bend in many
directions. Regardless, a specific value of S will locate a specific point,
P, which is attached to a specific molecule in the blade at all times. The
actual number of S is defined to be the line integral distance between the
shank axis system origin and the point P, when the blade is fully unloaded.
After any loads are applied, the line inteqral between SAX and P will, of
course change, but the value of § identifying P will remain the same.

The parameter S is used throughout the analysis as the variable of
integration; many functions that vary with blade radial position (and often
time) are integrated as S moves from 0 to R. The BRL coordinate concept
outlined above precludes S itself ever being a function of time.

The "blade axes" (BAX) are located with origin at P, with the number-1
axis tangent to the BRL at P and pointing generally toward SAX. Like the
BRL, BAX are fixed to the mass molecules at P, so the locations of these
coordinates are always defined. The specific angular orientation of BAX
(about the number-1 axis) can be specified in any convenient manner.
Locating BAX on each blade section so the number-2 axis is parallel to the
blade chordline is one convenient definition, but others are possible. Some
analysts prefer orienting BAX with respect to the airfoil line of zero
1ift, for example.

With the definitions of the BRL and BAX complete, the blade motion
problem comes to defining the motions of BAX at every S as a function of
time. The next subsection discusses the fundamental approach taken toward
this portion of the analysis.

B.3 BRL Shape Definition

The "blade motion" problem is needed to define the shape of the BRL,
since BRL motion often has a significant effect on 1loads applied to the
supports by the complete rotor system. This subsection defines methods and
nomenclature used to define the geometry of the BRI.

The vector, b, locates the point P (at station S) with respect to SAX.
The resolution of b is also SAX. This position vector is, of course, a
function of S,T where T is time.

The vector, f, is used to refer to a column of control parameters that
mechanically change the blade structure. On most rotors only a single
parameter "feathers" the blade; hence the choice of "f" to represent the
"mechanical configuration" column. A column is used in the analysis for
generality, because multiple mechanical controls have been implemented in
some past rotor designs,



The array R. is used to convert vectors resolved in SAX for resolution
to BAX; this is the matrix of direction cosines defined in Appendix A.

This analysis incorporates concepts of "quiescent" or "initial"
conditions of the BRL to support the validity of certain assumptions to be
made later in the derivations. The rotor blade is first viewed as spinning
at some nominal rate under a prescribed airload. These nominal conditions
are usually chosen to lie somewhere close to the middle of the blade
operational profile, so that BRL motions from a quiescent shape associated
with these nominal conditions are small. When operating in the defined
nominal or quiescent conditions the geometry of the BRL is defined by the
"initial shape" versions of b and R., denoted b and R__. herein. Under
the quiescent conditions, the rotor spin rate is ?O, the mechanical control
is fo and the spin acceleration is defined as zero.

Now consider a change of £ from f£_ while the blade is otherwise in its
quiescent condition. The BRL will move to a new position defined by the
nomenclature b and R_.. A transformation array R.. can be defined which
rotates the BaxX from the nominal (initial sgape) position to the
intermediate initial shape position. The direction cosine arrays are
related as follows-

Ro. = Rf’Roo' (B3.1)

The shape of the BRL after movement of f from the initial value will be
called the "controlled shape" of the blade. Note that the initial shape is
a constant in time but the controlled shape varies with time if the column
f does.

Elastic motions due to applied loading other than the defined quiescent
loading will move to BRL to its final position at any instant of time. The
column vector b refers to the final absolute position of the BRL at any
time, so that the positional elastic deformation is b-b . An "elastic
angular" deflection column, e_, is also defined. This column” contains three
Euler angles which define % he matrix of direction cosines R_.. R_.
transforms a vector resolved to BAX in the controlled position to r&ference
BAX in the final instantaneous position of the BRL. The rotations are
defined-

R. = R_.R . (B3.2)

It is convenient for some portions of the analysis to group all six
elastic deformations into a single vector, we; in the conventions of
Appendix A-

_ T T,T

w, = ((b bo) ey ) (B3.3)

The column vector w_ completely defines the shape of the BRL given the
controlled position of %his coordinate. w_ is the deflection entity which
arises because of the application of loads to the BRL, other than the loads
defined for the quiescent condition.

Note the resolution of the elements in w_. The first three elements are
resolved to SAX, and the last three are resolved to BAX in the controlled




position. These resolution conventions are important, and will be used when
the model for BRL elasticity is defined.

B.4 Loads

As stated previcusly, loads models are derived using "blade element" or
"strip" theory. In this approach the blade is viewed as a massless elastic
body to which are installed an infinite number of blade elements. Each
blade element has mass and is usually shaped like an airfoil (except near
the root for most rotors) so that aerodynamic loads are applied to the
element of infinitesmal radial dimension.

The blade element supports applied loads from inertial and aerodynamic
origins, and applies these to the massless BRL. The element has radial
dimension, dS. A distributed force, f, and moment, m, can be envisioned, so
that the force and moment vectors supported by the element are £4S and mds,
respectively. Subscripts "i" and "a" are applied to f and m to denote
"inertial" and "aerodynamic" origins, respectively.

For consistency with the BRL geometric entities defined above,
distributed force vectors are resolved to SAX and distributed moment
columns are resolved to the control-positions of the BAX.

As was the case with the BRL geometric coordinates, it is convenient to
place the force and moment distributed loading columns into a single
loading column, p -

p= (£5,m)T (B4.1)

The symbol p_ denotes the p column applied to the BRL for the defined
quiescent loading conditions. This quiescent loading is made up of an
aerodynamic contribution and an inertial distributed 1load due to
centripetal acceleration,

The acceleration of the blade element is calculated based on the motion
of the BRL (produced by the blade-motion portion of the analysis) and on
the motion of SAX produced by the gimbal analysis. The method of D'Alembert
changes the sign of this acceleration and views the result (multiplied by
the mass of the element) as an applied force. This force must be supported
by the massless BRL to produce the calculated acceleration. Viewed as such,
this force is the "inertial load" on the massless BRL.

The mass of blade element is defined as dS, where is the
distributed mass of the BRL, a function of S. The blade element &lso has a
distributed inertia, I, ., so that the rigid body rotational inertia of the
blade element is I .dg. Most of the elements in this distributed tensor
vanish because of éﬁe vanishingly small radial dimension of the element,
dS. Only elements that do not contain products of the number-l1 BAX
dimension (i.e., the dS dimension) are nonzero in Ib”

The other primary source of loading on the BRL is aerodynamic. The
motions of SAX and the BRL cause the element to move with respect to the
air mass in the vicinity of the element, and this motion gives rise to
aerodynamic distributed loads on the blade element. The aerodynamic
equations can be written for the airfoil of the blade element (with




infinitesmal span, dS). Appropriate aerodynamic math models can then be
used to define the distributed aerodynamic loading functions given the
relative motions of the element. The details of typical aero models are
described in a later subsection, below.

The distributed loads on the BRL cause elastic deformation which is the
blade motion problem. The loads also sum to produce the total force and
moment vectors applied by the BRL to SAX. In the analysis, these columns
are given the symbols fs and mgr respectively.

B.5 The Elastic Model

Rotor blades can have very complex structural designs that give rise to
irregular structural properties. Many rotors have one or more hinges
installed for control and stress relief at certain radial stations: such
hinges introduce singularities in the stiffness properties of the blade
about the axes of the hinges.

The mathematics of structural analysis is presented in many standard
texts. A conventional vehicle for definition of the elastic properties of a
structure is the "stiffness influence function" or "kernal function", K ..
In BRL geometric notation defined above, the stiffness model for the SRL
can be expressed-

P(S) - p(S) = /R K (W, £, S, N). w (N) N (B5.1)

where N is a dummy variable of integration substituted for S. Note that the
elastic deflection coordinate, W is incorporated as an argument in the
influence function. This indicates that the structural properties of most
whirling rotor blades are very nonlinear. The nonlinearity precludes the
usual and convenient assumption that deflections do not affect loads. The
loading, particularly due to the centrifugal forces supported radially by
the whirling blade, contribute significantly to the stiffness properties.
As the rotor spin rate Z changes, the BRL shape changes which reflects the
change in centrifugal loads supported by the structure. These loading
changes modify the effective stiffness of the structure.

Also note the presence of the feathering control column, £, in the
stiffness function argument. Mechanical control positions portions of the
blade with respect to other portions; such geometrical changes will produce
significant changes in the stiffness properties.

Equation B5.1 shows the loads and displacement columns as functions
only of S. In a dynamical situation, p, w_ and £ all become functions of
time as well as the S radial coordinate.

This analysis assumes that appropriate definition of the stiffness
influence function is provided as data defining the blade properties. The
need for this definition is minimized in later sections of this document,
however, as the parameters associated with eigenanalysis are effectively
substituted for the most significant portions of the structural influence.
Refer to Subsection B.8 for further discussion of these substitutions.




B.6 Inertial Distributed Loads

As stated previously, the distributed inertial loads are actually
accelerations (times distributed mass) viewed as applied loads in the
method of D'Alembert.

The blade element at station S is viewed as a rigid body. The equations
of rigid-body motion have been derived in Appendix A, Subsection A.5.4.
These equations can be applied directly to the blade element situation to
compute the force and moment on the element. Changing the signs on these
distributed force and moment vectors produces the loads applied to the BRL.

The following expressions arise from these applications of the

derivations of Appendix A (Refer to Table B.l1 for nomenclature
definitions)-

2

£ o= M + RY (X)X (W), ) Sy ) (B6.1)
m, = -M_ X(cg). Rouw  + 1. wg + X(w ). I W (B6.2)
Uor= d(vb)/dT

or, restated in expanded form-

Uy, = U+ BT+ 2X(W) T +R(W]) b + XP(w ) b (B6.3)
u, = vé + X(w,). Vg (B6.4)
p, = (£}, m” (B6.5)

B.7 Aerodynamic Distributed ILoads

The methods of Appendix A can be applied to compute the velocity of a
rotor blade element with respect to the air in the vicinity of the element.
The result (in the nomenclature of Table B.l) is-

Var = R. ( Vas T b* + X(was). b)) (B7.1)

Note that this vector is resolved to BaX.

This calculation of the aerodynamic velocity vector of BAX views the
air mass surrounding the rotor as moving as a rigid body: this air body can
have three translational and three rotational velocity components of motion
with respect to inertial space.

Mathematical models associated with aerodynamic interference and wind
must be used to compute the air mass motion- these models are viewed as
outside the rotor models in this derivation. (Aerodynamic interference
velocities are air motions created by devices submerged in the air mass
that support aerodynamic loads).

With some analyses this rather simplified view of air motion is not
adequate, and additional modes of motion must be allowed for the air mass.
In these cases suitable models must be derived and used to compute the air



motions. The results of such computations are often added directly to v r
at each radial station for each blade in the rotor. The expression for tﬁe
total aerodynamic velocity is written-

Va = Var * Vaa

where v__ is the "augmentive" local aerodynamic velocity added to the basic
calculafion to produce the final result, As stated above, this augmentive
interference component must be supplied to the rotor analysis from outside
models dealing with the complexities of aerodynamic interference
velocities.

The Mach number and angle-of-attack of the blade airfoil at S are
computed directly from elements of VT

2 _ 2 2 w2

M® = (v‘_=12 + va3) / c (B7.3)
- -1

A = tan (va3/va2) (B7.4)

where Vé is the velocity of sound. The aerodynamic pressure is given by the
expression-

o = 1481 M2 P, (B7.5)

where P_ is the ambient pressure ratio: the local atmospheric air pressure
divided by sea-level standard pressure (2116 psf). Classical aerodynamic
theory shows that the aerodynamic forces produced by a body in an airstream
are proportional to this aerodynamic pressure times a characteristic area.
Therefore, the force on an infinitesmal blade element divided by the
element radial dimension (i.e., the force per unit radius or distributed
force) 1is proportional to the dynamic pressure times the chord. A
convenient constant of proportionality for the loads expressions is thus
stated-

Q0 " % % (B7.6)

The specific characteristics of the airfoil at a blade station will
give rise to nondimensional coefficients of force and moment, which might
be expressed as functional relationships as follows-

Cea = Cea (Ab, M) (B7.7)

Cna = ma (Ab, M) (B7.8)

Note that the functions indicate dependence on angle-of-attack and Mach
number. Some airfoils may have other dependencies. For example, if a slot
is incorporated in the blade from which an air sheet effluxes, then the
momentum coefficient of this efflux will also influence the force and
moment loads coefficients.

Specific models for the loads coefficients will have to be prescribed
for an analysis before the rotor characteristics are defined. These
prescriptions often take the forms of data tables that can be interpolated
to yield the necessary functional definitions.
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Assuming that a suitable numerical process yields the necessary

aerodynamic coefficients, the distributed aerodynamic force and moment
columns for the blade element can be defined-

T _T .
£, =0 R R] (A ). cp (B7.9)

m

a Qac Cb ®na (B7.10)

and the final distributed load column stated-

p, = (£2, m)T (B7.11)

These expressions when combined with a suitable tabular (or other)

definition of the blade element aerodynamic properties suffice to define
the aerodynamic distributed loads.
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B.8 Blade Motion Analysis

B.8.1 Nonlinear Blade Motion Equation

Equation BS5.1 1is the elastic model for the massless BRL. The
distributed load column, p, arises from inertial and aerodynamic phenomena.
Adding these contributors and eliminating p produces the generalized blade
motion equation-

p,(S, T +p,(S, T - p(S) = Rk W, £, S, M. W (N, T)AN (88.1)

The solution approach taken in this analysis is to transpose the loads
columns to the right hand side of the equation, and then to add terms
representing linear components of the inertial loading function and elastic
property to both sides of the expression. The result is-

MWl Ky Vg + /T K (S) ML W N, T) AN = p (S, T) (BS.2)
.. ~R
P, =P; * M. L KI‘ W, +P, = P, -/ o (Ke. - Kep') Wy aN (B8.3)

where now, p. is the "nonlinear" distributed loading function. The arrays
M. and K.. are linear portions of p. associated with the relative
acceleratign (i.e., acceleration of the BRL with respect to SAX but not the
total acceleration with respect to inertial axes) and an inertial
stiffness. The inertial stiffness arises because the mass of the blade
moves within a conservative centripetal acceleration field, creating the
apparent inertial forces that appear as stiffness terms. Note that these
linear mass and stiffness operators are both functions of S.

The "perturbation" stiffness influence function Ke . is a linearized
form of X . Note that the linearized stiffness function Ras the BRL elastic

deformatidn coordinate and the feathering column removed from its argument.

No assumptions have been made in equations B8.2 and B8.3. The same
items have simply been added to both sides of the equation. The items have
been chosen to represent the most powerful mass and stiffness terms in the
equation, however, so that the added terms on the right hand side of the
equation effectively subtract the linear mass and stiffness properties from
the full nonlinear representations of these entities. The result is a
nonlinear forcing function on the right hand side of the equation with very
weak (and in some cases, negligible) mass and stiffness influences. Of
course the modified distributed loading column still has strong influences
due to BRL rates, aerodynamic loads (which tend to relate mostly to BRL
rates and not position or acceleration) and inputs to the rotor analysis
due to HAX motions and control.

Many standard texts derive Maxwell's reciprocity theorem for structural
influence functions. Since the perturbation function in the above equation
is now linear (it does not depend on deflections or loads) this theorem
applies and can be expressed-

_ T
Kep(S,N). = Kep (N,S) . (B8.4)
This relationship arises because of the principle of energy conservation

within a conservative (linear) structure; the principle is essential to
major conclusions made in the normal mode analysis presented later.
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The next subsection addresses analysis methods that are to be applied
to the reformulated blade motion equation, Expression BS.2.

B.8.2 Nodal vs Modal Analysis Methods

Equation B8.2 is a partial integro-differential equation with two
independent parameters, S and T. The equation is linear if the nonlinear
forcing function, p_ is viewed as a driving function provided outside of
the solution of the basic equation itself.

The approach taken herein is to solve the blade motion equation
numerically. The results of the solution provide all entities required to
solve for the forcing function, which is then applied to the equation for a
short time duration. The equation is solved for new BRL motion entities,
and the process is repeated in a loop.

The equation is still in the form of a continuum, and therefore
represents an infinite number of degrees of freedom. This form must, of
course, be converted to a finite number of coordinates for practical
solution.

Two basic methods are often used so solve such equations, the
finite-element or "nodal" approach and the eigenfunction or "modal™
approach. As stated before, the second of these has been chosen for the
present derivation, but the paragraphs below present the trades that were
made in arriving at the chosen method.

The Nodal Method

In this approach, the equation is reformulated to apply to a finite
number of rigid bodies; each pair of adjoining bodies is connected with a
massless beam. The bodies are called nodes, and are each given up to six
degrees of freedom. The equations for the nodal model can be derived by
converting equation B8.2 into a summation equation instead of an integral
expression, facilitated by allowing each blade element (node) to have a
finite radial dimension.

The nodal model so derived can be expressed as a second order matrix
equation in constant coefficients. The entire equation can be integrated
numerically (solving for the motions of all of the nodes) to represent the
flexible blade motion problem.

The major problem with this approach is the number of nodes required to
get good accuracy. If the model is to be a high fidelity representation of
the blade dynamics for, say, the frequency range associated with the first
two natural modes of motion, up to 30 nodes will be required to represent
the natural frequencies accurately. Such a model will have up to 180
degrees of freedom, just to reproduce two physical modes with reasonable
accuracy.

When the equation is solved numerically, the numerical step size (on
time) needed to maintain numerical stability of the solution will be
governed by the highest mode in the model, in this case the 180 th mode,
This mode is, of course, not of interest to the solution, but it will have
to be treated properly or the numerical sclution will go unstable even if

the physical model is stable.
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This situation causes the nodal approach to the forced-motion solution
to be very expensive and often totally impractical. The nodal model can be
used to calculate the natural frequencies and modeshapes for the blade,
however, and these resulting "eigenfunctions" can then be used to perform a
modal analysis for the forced-motion problem.

The Modal Analysis Method

In this method, the continuous dynamical representation of the blade
structure is transformed into an infinite number of equations, each
describing the participation of a single natural mode of vibration in the
overall dynamical response of the blade. This infinite number of total
differential equations in time can then be reduced to a small finite number
of equations by rationalizing which of the natural modes will remain
unexcited for the particular analysis being conducted. The analyst should
know the frequency content of the forcing function on the blade (i.e., the
frequencies of interest in the function p_). Knowing this, a rational
rejection of modes above certain natural fredﬁencies can be made because it
will be known that these higher modes will not participate in motions under
the function P-

In this way, a minimum number of modal degrees of freedom can be used
in the forced-motion numerical integration, with predictably accurate
results. The approach will be a minimum cost approach considering the
expense of data processing time when the model is executed in a computer.

With these background considerations in place, the next step in the
analysis process is the eigensolution of Equation B8.2- the subject of the
next subsection.

B.8.3 The Eigenproblem

The Eigenproblem deals first with the solution of the homogeneous part
of Equation B8.2, i.e., the expression with p_ = 0. The equation is now
linear with two independent variables, S and T.

The usual approach to solution of such equations is to propose a
solution form which is the product of two functions, one a function only of
S and the other a function only of T. In this case, a simple sinusoidal
function is proposed for the portion dependent on time.

W =W, sinW, T (B8.5)
e 1 1

This solution form can be substituted into the homogeneous equation to
become:

—R
-Wi M. w, + KI. w. o+ _/ o Kep(S, N). wi(N) aN =0 (B8.6)

This is called the characteristic equation which requires eigensolution.

There will be solutions to Equati B8.6, i=1,2,.. infinity, each with
a specific value for the eigenvalue W~., and each with a specific function
Ww. (S) called the eigenfunction or modeshape. These solutions are subject to
the boundary conditions placed on the BRL, which in this case are zero
position and slope at the root and zero shear force and moment at the tip.
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Many numerical methods are available for calculating the eigenvalues
and eigenfunctions for a structure such as this rotating beam system. The
methods almost all involve reformulating Equation B8.6 into a nodal or
finite element model and then processing the resulting matrix equations.
Sophisticated programs such as NASTRAN have been developed over many years
with facilities for preparing eigensolutions for complex structures.

For the present analysis it is assumed that the eigensolutions are
available for use in formulating this forced-motion solution method. In a
later subsection it will be seen that the eigenfunctions essentially
replace the model for the structural stiffness influence function. The
ramifications of this substitution will also be discussed in that section.

Before leaving the subject of the eigenproblem, an important
characteristic of the eigenfunctions will be demonstrated: their
orthogonality with respect to the structural mass. To show this, consider
two representations of Equation B8.6, one for the i'th mode (i.e., with
eigenparameters i and w, incorporated) and the second with the j'th mode.
Premultiply the first eéuation by the transpose of w. and the second
expression by the transpose of w,, subtract the equations-and integrate the
result on S between 0 and R. Each term in this equation is a scalar, so any
of the terms can be transposed without changing their value. Also, the mass
and inertial stiffness matrices are known to be symmetric, so they equal

their own transposes. The results of these manipulations produce the
following equation:

2 2 T

-0, % - W/ EO‘ Wit M. ow, dS
~R T T T _

+ _/ ﬁ__/ o [wj (s) Kep(S,N). wi(N) - wj (N) Kep (S,N). wi(S)] dN ds(és??)

Recalling Maxwell's reciprocity relationship B8.4, it is seen that the
double integral terms incorporating the stiffness cancel: this occurs
because the order of integration on S and N can be reversed. Since the
eigenvalues are different for each mode (distinct) for most structural
problems, the following relationship emerges:

T _ g
_/Fi LF M. w, ds=0 , i#3 (B8.8)
This is the orthogonality expression on the system mass matrix.

The modeshapes are also orthogonal with respect to the system
stiffness., This can be seen by premultiplying Equation B8.6 by w. transpose
and integrating over the entire blade radius. Since the mass tefm vanishes
when i is unequal to j, the resulting stiffness integrals must also vanish
for unequal i and j- effectively expressing the orthogonality of the
eigenfunctions with respect to the system stiffness model.

T T _ .
/o W5 Ko wy + /7o w5 (8) R (SN wi () aN] dS =0 , i # 3

(B8.9)

These special characteristics of the eigenfunctions distinguish them
from any other functions that may be chosen for the model, in that they
enable decoupling the equations of motion for the system. This process will
be demonstrated in the next subsection.
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B.8.4 Coordinate Transformation Using the Eigenfunctions
Now propose a coordinate transformation for Equation B8.2 of the form—
Wy (s, T) =‘ii wi(S) Qi(T) (B8.10)

This expression can be substituted into Equation B8.2, and the resulting
formula premultiplied by the transpose of w. and integrated over the
radius. The result is- ]

- T .e T
> _/—i [wj M. ow, Q"+ Wy Ko W, Q

+ /o W5 (8 K (M. w ) g, an] as = /R w3 B, S (B8.11)
Because of the orthogonality characteristics on the mass and stiffness
properties that were demonstrated in the previous subsection, all terms in
this equation vanish except when i=j. Additionally, for those remaining
terms, Equation B8.6 can be used to eliminate the integrals involving the
stiffness function in lieu of terms involving the system mass and the
eigenvalues. The resulting equation is

. 2 .
M. (Qi" +W.” Q) =G_. = .
93 (Qj i Qj) ng rJ=1,2, (B8.12)

where the generalized mass and generalized forcing functions are defined by
the following two expressions, respectively:

T
M.= / R w. M. w. d .
93 =< o %3 WJ S (B8.13)
—R T
ng = _/ o wj pn ds (B8.14)

Note that the linear portion of the structural stiffness influence function
has vanished completely from the model, although nonlinear stiffness
effects still remain in the forcing function (Equation B8.3). This is the

process mentioned previously, where the structural property is effectively
replaced by the eigenfunctions.

Equations B8.12 are a rigorous representation of the original continuum
because there are an infinite number of them. An infinite number of
independent functions will represent any arbitrary shape of the BRL, so the
solution at this point still invokes no assumptions. All nonlinearities
have been retained in the nonlinear distributed loading function, p_.

Of course it is impractical to solve for an infinite number of
equations, so the basic assumption on the solution involves restricting the
number of normal mode equations (Expressions B8.12) to only those of
interest in a particular forced-motion solution.

The next subsection presents a number of important observations
regarding the modal representations derived above.

B8.5 Observations on The Decoupled Model

As mentioned before, the decoupled normal mode equations allow the
analyst to have considerable insight into the physics of the problem, in
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order to make good judgments on selecting which portions of the model to
retain and which to discard. The modal equations reflect the natural modes
of vibration of the system which will always characterize the response of
the system under the influence of external loads.

To explore this in more detail, consider Figure B.2 which shows the
dynamic response of one of the Equations B8.12 to the application of
sinusoidal loading with varying frequency. This Figure is often considered

a plot of the "dynamic amplification €factor", revealing how the system
responds to stimulation.

T T — — — T 0 PHASE
PHASE) : ANGLE,

AMPLITUDE AMPLITUDE DEGREES
RESPONSE
RATIO I
-390
O FRecuENeY, W 3
s e e — onn—  —  — ce— ’-—.—-.—-—.—-0—-I80

Figure B.2 Frequency Response Characteristics of the Modal Equations

The main interest here is when the resonance frequency, W, 1is large
compared to the frequency of excitation. When this is the case, the figure
shows that the equation responds with an amplitude near that exhibited with
forcing functions of zero frequency (i.e., a static load) and the phase
lead/lag of the response is zero. For these conditions, the equation is
responding as a massless elastic system. The time derivative term is
negligibly small in this case, so it can be dropped. The resulting
expression is the pure elastic representation of the mode:

2
M . W. . = . B8,
g3 "5 QJ ng (B8.15)

This representation 1is quite suitable for modes whose frequency is
reasonably higher than excitation frequencies of interest (the interest to
be supplied by the analyst).

The massless elastic equation can also be written

2
Q= Gg3 / Mgy Wy
which shows that the response becomes less and less as the frequency goes
up. This is the rational basis for discarding all high frequency modes in
the analysis, beyond the frequency range of interest. This assumption can
be made with confidence (assuming that the frequency band of interest in
the forcing function has been well established) because the modal
participation in the shape of BRL is seen to disappear for the higher

) (B8.16)
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modes. Other analysis methods (such as those that use so-called "primitive"
modeshapes- shape functions that approximate the shapes of interest but
which are not normal modes and therefore do not allow decoupling of the
infinite number of equations) can not use this rational basis for reducing
the equation set down to a.reasonable size.

By restricting the number of normal mode equations only to those modes
of interest, the complexity of the forced motion problem has been minimized
for a given desired level of fidelity. The numerical processes that are
used to solve the equations can be of minimum sophistication, which almost
invariably leads to the lowest cost and lowest risk solution of the forced
motion problem.

The retained equations can be expressed now in finite form using column
vectors to contain the modal coordinates-

.o 2

T +Ei.a=4 (B8.17)

g =M /oDt p, as (B8.18)

The array E2 . 1is a diagonal matrix with the eigenvalues_{Placed to
correspond to-“the selected normal coordinates. The array M_ ~. is the
diagonal matrix of generalized masses. The column g cdntains the
generalized forcing functions each divided by the associated generalized
mass (as indicated by premultiplication by the inverse of the generalized
mass matrix).

The matrix D is called the modal matrix. It is composed of all of the
eigenfunctions associated with the selected modes. Using this array, all
equations B8.10 can be combined into a single matrix expression-

-
-~

W, (S, T) = D(S). q(T) (B8.19)

where it has been shown that D is a function of S but not of time.
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B.9 Geometric Considerations

Equation B8.19 expresses the elastic deflection of the BRL as a
function of the modal coordinates, 4. If an adequate number of normal modes
is included in the model, this expression will be accurate. Experience has
shown, however, that BAX motions in a radial direction are extremely
sensitive. Very small motions in this direction ultimately cause large
loads effects at the blade shanks due to the strong centripetal
acceleration field in which the blade is operating.

When a small number of modes is incorporated in the model, Equation
B8.19 fails to produce good results for this sensitive radial motion of the
BRL for operating conditions where the normal coordinates, q, become large.
An alternative method for expressing the BRL position is needed; a method
that will produce good results with a small number of modes operating with
relatively large excursions.

Such a model can be derived if the BRL is assumed not to stretch under
loading. This has been found to be a very good approximation for most
rotors. The tensile deformations of the blades is almost invariably
negligible.

If the BRL cannot stretch, then a vector of length dS can be considered
which projects from the point P (see Figure B.1) in the negative number-l
BAX direction. The vector dS can be resolved by the R. array of direction
cosines, to calculate the corresponding vector, db.

T

db = -R .ildS

where the unit vector has been incorporated to show that dS lies along the
number-1 BAX system axis.

Dividing this expression through by dS, and using a prime to denote
differentiation with respect to S yields the result-

b' = —RT.il (B9.1)

This expression can be integrated with respec
time to produce the BRL positional shape vector, b.

T

te S at any instant of

Returning to Equation B8.19, the modal positional and rotational
deflections can be expressed-

e, = D..q (B9.2)

e, = D,.q (B9.3)
The modal matrix D. has simply been separated into two parts, one producing
translational deflection and the other producing rotational deflection.
Although Equation B9.2 is fully representative of BRL elastic translational
position only for small q, experience has found that Expression B9.3 is
suitable for representing the angular deflections even for relatively large
modal participations.
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Equation B9.1 can be used to relate the positional and rotational modal
matrices, D.. and D_.. To do this, consider very small modal motions when
the blade 1s in 1Its quiescent state, Under these conditions the BRL
positional shape can be expressed-

b = bOo + D,.q (B9.4)
Equation B9.1 can be written in expanded form, noting that the array R
(due to feathering) is unity for this quiescent consideration-

T T

Voo L .
b' = Roo.Re.l1 (B9.5)

£

For small q, the direction cosine matrix due to elastic motion can be
expressed in the form-

Re. = I, - X(ea). (B9.6)

and from the definition of the quiescent position-

T .
' = -
bOO = Roo'll (B9.7)

Equation B9.4 can be differentiated with respect to S and then combined
with Expressions B9.3, B9.5, B9.6 and B9.7 to produce the relationship-

v _ ol
Db. =R o.Xl(l).Da. (B9.8)

ol

This equation can be used to calculate elements in the modal matrices,
given other elements, so that the input data to a computer analysis is
minimized and made convenient for the user. The expression will also be
used later when the rotor model is reformulated to remove small differences
of large numbers.

A word of caution is extended with regard to Equation B9.6. This form
should be used only for very small q. Significant errors will arise if this
form is used with large modal participations (large ¢q) because the
approximation does not produce accurate results for the small movements the
BRL. makes radially with relatively large gq. These very small radial
movements produce very significant loads due to the strong centripetal
acceleration field in which the blade is operating. Because of this, a more
rigorous formulation of Re' is needed in most analyses where q can become
large.

Returning to the vector -dSi,, the derivations in Appendix A can be
used to calculate the rate of a pdint on the BRL dS away from the point P.
If the difference between the rates of the point P and a point dS away is
taken, and the result divided by dS, an expression for rate change vs S is
created. Resolving this result to SAX produces an expression for the time
derivative of b, differentiated with respect to S-

ev _ T .
b** = -R. X(w ). i (B9.9)

The Coriolis theorem derived in Appendix A can be used to define the
second time derivative of b, also differentiated with respect to S-




. o s
b = =R, (X (wbs). + x(wbs).)l1 (B9.10)

Equations B9.9 and B9.10 can be integrated from 0 to any position S
along the BRL, to produce the first and second time derivatives of the
vector b (time derivatives taken with respect to SAX). These entities are
essential for substitution into Equations B6.3 and B7.l in order to solve
for the inertial and aerodynamic distributed loads.

The methods of Appendix A can be used to produce the array, R_. from
the Euler angles in the column e_. These angles are small, but care must be
taken in approximating the trigonometric functions comprising R . if
important effects are not to be lost. Experience suggests that all Sf the
trigonometric functions can be represented as series including all
quadratic terms. Cubic and higher order terms can usually be discarded.
Note, especially, that the cosine of any of the Euler angles cannot be

represented as unity: it must be incorporated as unity less half the angle
squared.

Appendix A also shows how to relate the rates resolved to a body-fixed
system as functions of the time derivatives of the Euler angles. In the
nomenclature of this section, this expression is-

Wps = Wy. e (B9.11)
so that the BAX rate w g can be computed for substitution into Equation
B9.9. Direct differentiaglon of this expression yields-

wo=W.e +W.e" (B9.12)

bs y' Ta y' "a

which enables computation of wbs. for substitution into Expression B9.10.

These BAX rotational rate and rate-derivative entities relate BAX
motions to SAX. The inertial distributed loads Expressions B6.1 and B6.2
require BAX rotational entities with respect to inertial axes. The methods
of Appendix A enable representations of these entities to be expressed as-

Wy = R. W + Vs (B9.13)
A . . {RO 1
wp = R. Wl o+ x(wb). Yo +Woe (B9.14)

B.10 Shank Loads

The equations for distributed inertial and aerodynamic loads can be
integrated along the BRL to calculate the loads applied to SAX by the
blade. The expressions are-

£
S

_/Fi (fi +£,) ds (B10.1)

m

s = /S IX(b). (£, +£) +m +m] ds (B10.2)

If it is necessary to calculate the internal loads within the blade, they
can be produced by similar equations. One convenient formulation is to
integrate the distributed loads starting at the blade tip, so that the
initial values of the force and moment vectors supported internally by the



£, = -/ (£, + £,) an (B10.3)

™

- /S Rb). (£, +£) +m +m] ds (B10.4)

B.11 Equation Summary

The previous subsections have presented all of the expressions
necessary for the analysis of an aeroelastic rotor system. The equations
are very general, and can be further processed from this point depending on
the type of analysis to be conducted. Obviously, various assumptions can be
invoked to simplify the models depending on the accuracy needed.

Before continuing to refine the models, it is convenient at this point
to summarize them. Table B.3 collects the equations needed to form a
complete model. Note that the equations carry the same identification
labels (e.g., B3.1) as when originally derived in this presentation.




B.12 Reformulation

The equations of aeroelastic rotor analysis are notorious for their
subtle combinations which, in effect, produce small differences of large
numbers that are very important to the accuracy of the analysis when
performed by computer. Making simplifying assumptions in the models is

perilous because often such simplifications eliminate very important
effects,

There are effects in the models which produce very large numbers in the
calculations, but these large numbers subtract in later stages of the
analysis leaving only small terms which are very important. The results of
these characteristics of the model often cause computer implementations to
produce very inaccurate results. Even computers with very large word sizes
can be swamped by these problems. When the equations are implemented on a
computer with limited significant figure accuracy (such as a 16-bit integer

digital computer or an analog computer) these problems can completely
destroy the accuracy of the solution.

The answer to these problems lies in reformulating the equations in
ways that will cause the subtractions of large numbers to occur in the
equations before they are programmed. If this is done correctly, the
computer can be used to solve directly for the important "small-

difference" parameters, which can retain good accuracy because the large
masking terms have been eliminated.

The specific ways of reformulation must be selected with thorough
knowlege of the physics of the problem- the models and their special
idiosyncrasies must be well understood so that the critical areas that
produce numerical problems can be identified and reformulated.

One of the most important areas requiring reformulation lies in the
expression for the inertial distributed loading, and more specifically, in
the expression for the translational acceleration of BAX with respect to
SAX. The large terms appear in the models due to the strong centripetal
acceleration field established by the spinning of the rotor systen.

A "modified" acceleration expression can be stated as follows-

2
.. _ . _ ) (B12.
b 2X(z) . e, - X (z). (bOo +e) (B12.1)
so that modified inertial and aerodynamic distributed forcing functions can
be expressed-

- e

f.=-Mu (B12.2)
mi 1b mbr (cg assumed = 0)

fma = fa - fao (B12.3)
The term f£ is simply the distributed aerodynamic load defined for the
quiescent loading as discussed in Subsection B.4. This function varies only

with S (not with time) and is normally input to the analysis.

The terms incorporated in the acceleration expression essentially
comprise the linear components of the acceleration due to BRL elastic



movements. Because these are the linear components, they can be processed
separately from the nonlinear calculations, and carried through the entire
analysis including those areas where large terms subtract. These processes
will be conducted in the next subsections.

The terms incorporated in Equations Bl2.1 have been given signs to

cause subtractions from u, . Because of this, u will be significantly
br mbr
smaller than u,_ .
br

Other specific terms might be incorporated in this inertial
reformulation depending on the judgement of the analyst; The expression
presented. above has produced good results, however, and is therefore
recommended as a method for significantly improving the accuracy of an
aeroelastic rotor numerical analysis.

The modified acceleration must be processed into the rotor models in
essentially two different ways-

* The generalized force and shank loads expressions B8.18, Bl10.l and
Bl10.2 must be processed so that the modified distributed loading
functions appear in their integrations on S in lieu of the unmodified
loading functions.

* A formulation for £ i is needed wherein the subtractions implicit in
Equation Bl2.l1 are made properly; that is, in a manner that will not
diminish the accuracy of fmi when it is calculated by computer.

The next subsection shows how to process the generalized and shank
loads expressions to produce reformulated models for these entities.
Following this presentation, Subsection B.14 addresses the process of
summing loads produced by all the blades applied to the gimbal ring; this
summation also creates small differences of large numbers that need
reformulation. Subsection B.15 presents a carefully formulated model for
calculating the modified distributed inertial forcing function.

B.13 Generalized and Shank Loads Expression Reformulation

Equations Bl2.1 through B12.3 can be rearranged to the forms-

.e . 2
£. =£f_ ., - (e’ + 2X(z). e + X" (z2). (b + e.))
i mi Mb b b 00 b (B13.1)

fa = fma + fao (B13.2)
and these versions for the distributed forcing functions can be substituted
into the radial integrals needed to calculate the generalized forcing
functions which act on the BRL normal mode equations and the shank load
integrals. The paragraphs below describe these substitutions on a step- by~
step basis, but intermediate versions of the loads expressions being
reformulated are not printed for brevity. The reader should be able to
reproduce the intermediate expressions of the models as they are
reformulated, if the steps described for the processes are executed
carefully.




Some convenient definitions of scalar entities involving the variation
of rotor spin rate from the quiescent value are expressed-

Z

b zZ/ zo -1 (B13.3)

2
Zz (z / ZO) -1 (B13.4)
With these definitions, equation Bl3.1 can be rearranged as follows-

— LN ] - 2
fi -fmi - Mb[eb + 2X(zo). e, + X (zo). (boo + eb)]
. 2
- [-2Z2_ 2 X (). e =277 (I.-I..) (b__ + e.)]
Mb p o3 b "zo 3 00 b (B13.5)

where some of the special characteristics for the cross-product operator,
X, (described in Appendix A) have been invoked.

The first bracketed term in Equation Bl13.5 is the linear portion of £,
that occurs when the BRL is in its quiescent position. The portions of thi
term that involve acceleration and position, e and e, give rise to the
mass and stiffness arrays M. and K.. that were gﬁscussed 1n Subsection B.8.
Also note the steady term involving bo which is part of the quiescent
loading function, Pyr that was discuss€d in Subsection B.4, Terms in the
generalized function that emerge because of these effects must be
discarded, since these influences have already been subtracted from the

nonlinear distributed loads Function B8.3. This process will be described
in more detail, below.

Equation Bl3.5 can be substituted into B8.3 and that result substituted
into Equation B8.18 to produce an expression for the generalized forcing
function c¢olumn, g. When this is done a number of constant factors
involving integrations with respect to S emerge. These factors have been
given special nomenclature and summarized in Table B.4. Using these
definitions for the constant operators, the expression for the generalized

forcing function can now be written in terms of the modified distributed
loading functions~

g = _/"§ Gye (£

+ (zp Gyy» +G,)a" + 32, (g +G,

mi * fma) ds

q° q) + Gk (£, 9. g (B13.6)
Equation B9.2 and its time derivatives have been used in the substitutions
which produce Expression Bl3.6.

The operator G_. which appears in the radial integration is defined in
Table B.6 as an é%gregate function of S. Its definition in this manner
allows a computer solution external to the time-domain solution of the
rotor equations to solve for this operator. The resulting operator becomes
input data for the time-domain rotor analysis, which lessens the workload
in the time domain and therefore increases the computational speed.

When Z_ is zero the rotor spin rate is at its quiescent value. Note
that, whenzthis is the case, Equation Bl3.6 has no linear dependencies on

q°°® or q. This is because such linear dependencies are presumed purged from
this expression, having been included in the eigenanalysis portion of the



model. Also note that no constant terms appear in the equation, since these
vanish due to the definition of the quiescent loading function, p , and the
subtraction of this steady column in Equation BS8.3. °

The stiffness factor, G, that appears in the equation is defined in
Table B.7. This factor arises because of the nonlinear portions of the BRL
stiffness influence function addressed in Subsection B.8. Although Table
B.7 defines this function, external analyses often produce this G- array
directly. The array can be presented in tabular form as a function of £ and
g. Since this is a stiffness array, it can be effectivel¥ included in the
equations as variations in the eigenvalue matrix, Eq . (See Equation
B8.17).

For most analyses, the definition of the BRL quiescent conditions made
previously allow this nonlinear stiffness matrix to be neglected. If data
is available to describe this array, however, it can be incorporated in the
analysis as shown above.

Equation Bl13.6 combined with Expression B8.17 produces the full
blade-motion equation required for the analysis. Only weak functions of g
and q° appear on the right hand side of the diagonalized equation which
enhances the stability of a numerical integration process to a considerable
degree. Because the left hand side portion of this full blade-motion
equation is diagonal, an exact solution for this portion of the equation is
easy to formulate for the numerical integration step size on time.
Experience has been very good with solving this equation formulated as
expressed, above.

The shank force calculation defined by Equation Bl0.l can be processed
in the same way as the generalized forcing function described above. When
the modified distributed loading columns are substituted, constant radial
integral operators appear which have been summarized in Table B.4. Unlike
the generalized forcing function reformulation, however, the terms
associated with quiescent linear acceleration and elastic position effects
remain. The term associated with g°® that remains is particularly
problematic: it involves very significant differencing of large terms which
can introduce significant errors in the calculation of the shank loads if
not reformulated.

The blade motion equation can be used to eliminate q°° from the shank
loads expression. Equation B8.17 produces q°° while Formula B13.7 produces
the generalized forcing function. Using this approach to eliminate q°°
produces the reformulated expression for the shank force-

fS = fr + qud.(q°/Nb) + qu.(q/ub)
+ fso/Nb + Fsk(f.q).(q/Nb) (B13.7)

where the radial integral portion of the expression is given by-
£, = .
’ _/"*; Foe (g + Epa) G5 (B13.8)

and where the following define operators that are functions of rotor spin
speed-

to
|
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qud' = qu. + qud' Zp (B13.9)
qu. = Fq' + qu. Zz (B13.10)
fso = fz Zz + fo (B13.11)

The operator F_. is an aggregate operator that is a function of S. It is
defined in Tabfé B.6 in terms of previously-defined entities. The two terms
shown for F_. in Table B.6 incorporate some very small differences of large
constants. “These differences can be taken in a computer calculation
external to that associated with solving the rotor models as functions of
time. The calculations can be made using multiple-precision numerics to
retain accuracy. Since the subtractions occur before being used in the
time-domain calculations, accuracy in the calculation of the shank force
can now be retained, even using computers with limited word sizes.

Equation B10.2 for the shank moment can be processed as was the force
to yield the expression-

m, =m. + qud.(q /Nb) + qu.(q/Nb)

+ mso/Nb + Msk(f,q).(q/Nb) {B13.12)

where the radial integral is defined-
= 2
mp = /T Wy (Eps + £ 4 X(b) (£, + mx(2). b+ £ - £, )

2
+ X(bp—eb).(—MbX (Z).boo+fao) +m +ma] ds (B13.13)

A "perturbation" value for the BRL position vector is defined

bp =b - boo (B13.14)

and special operators that vary with rotor spin rate are defined

qu. = Mq. + qu. Zz (B13.15)
qud' = qu. + qud' Zp (B13.16)
M, = m, Zz + m (B13.17)

Note that Equation B13.13 shows the unmodified distributed forcing
functions being operated on by the cross-product operator X(b_).. Since
this perturbation operator is small, it is not necessary (and it is very
inconvenient) to use the modified distributed loading functions in this
case. The modified loads are used in the major portion of the integration
with operator Mp..

The operator M_. is an aggragate function of S defined in Table B.6.
Like F_., this operator involves some very small differences of large
numberé)that are essential to the accuracy of the shank moment calculation.
These subtractions are one of the major reasons for reformulating the
equations, because most computer solutions will suffer with considerable
losses in accuracy if the subtractions occur as the models are being solved
in the time domain.



B.14 Multiblade Combinations

The previous subsection addressed the loads calculations, showing how
to reformulate the radial integrations which produce loads entities to
cause subtractions of large numbers to occur in a computation external to
the time-domain solutions. This reformulation assures accurate calculations
for these radial integrations.

As stated previosly, other problematic differencing occurs when the
loads produced by all the blades in a rotor are summed at the gimbal ring.
These summations, if performed on the shank loads produced for each blade
i, i=l,2,...Nb, can be expressed as follows-

£q =2 By (N £y (B14.1)
my =% Ry (Ypg)e Mgy (B14.2)

Significant increases in accuracy can be achieved by defining additional
entities called "multiblade coordinates". These entities are simply
transformed versions of the normal coordinate column, ¢, and its time
derivative, as if these were loads. The definitions of the multiblade
coordinate entities are listed below:

qg = (/M) >, q; sin Y, (B14.3)
q, = (1/N,) E& q; cos Y. (Bl4.4)
q, = (/N) 3, q; (B14.5)
qg5 = (/M) 3, qf sin Y, (B14.6)
Qgc = (I/N) >, qf cos Y, (B14.7)
930 = (/N 25 4§ (B14.8)

where Yb‘ is the angle between blade number 1 in the rotor and blade number
i, measured as a "number-3" axis rotation between the SAX associated with
blade 1 and the gimbal axis system (GAX). Recall that GAX are SAX for blade
number 1 in the rotor.

For convenience, the multiblade vectors can be grouped into composite

vectors as follows-
T T T,T
(agr 9.r 9g) (B14.9)

I
T _T\T

(e T
9g = g07 9gcr a8 (B14.10)

Now define a process that takes an array, say Am. (which is an operator
on q or g'), and converts it into another form:

-~}
|
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— ~——  Note: Ai = Row i of A,

0 Al A2
A.m (A.). = 0 A2 —Al (B14.11)
A3 0 0

The resulting entity will be called a "multiblade operator", herein.

With these definitions, Equations Bl4.1 and Bl4.2 can be stated in a

different form which will produce good numerical accuracy when solved in
the time domain:

f >. R (Y, .).f. +A(F_.). +A (F__..). + I..f
g =i "3 7bi ri m = sq qm m' " sqd qmd 3"7so (B14.12)

m_=>. R (Y, .).m. +A (M .). +A (M__..). + I,.m
g =1 3'7bi"*ri m' 'sq In m' sad Ind 3" "so (B14.13)

These formulations have caused the subtractions among q and q° to occur
among all the blades in the rotor first, before being operated on by
loads-producing arrays F_. and M .. Additionally, subtractions of large
steady loads in f and "m have” been eliminated from the model. These
include, among othér contrf%ﬁtors, the steady root tensile force supported
by each blade which is a very large force that will mask small but very

important "differential tension" terms in almost any type of computer
analysis.

Equations Bl4.12 and Bl4.13 are the reformulated total gimbal ring
loads produced by all blades in the rotor. These will be transformed by the

gimbal analysis of Appendix C to produce the final rotor loads applied to
the rotor support system.

B.15 Reformation_gg the Modified Inertial Acceleration

An  expression is needed for b that will produce an
acceptably-accurate calculation for the "modified distributed inertial
forcing function, fm" which is used for many radial loads integrations.
Equation Bl2.1 preseﬁ%s the basic definition of this modified acceleration,
but this expression cannot be used as-is because small differences of large
numbers will destroy its accuracy. It is necessary to decompose specific
elements of the total acceleration vector, u,_, and then subtract the

necessary associated entities (term by term) so that the differencing
produces acceptable results.

To do this, define "deflection vectors" as follows-

X=b-b -e (B15.1)
0o b
X' =Db" - eg (B15.2)
X" = b - eg. (B15.3)
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These vectors are the differences between the actual BRL position (and its
time derivatives) and the BRL position that would be predicted by the
linear model of Equation B9.2 (and its time derivatives). Using these
deflection vectors, Equation Bl2.1 can be rearranged to the form-

u

abr - Ys + X" + 2x(ws' - 2).b° + 2X(2).x" + x(ws).b

+ IR0 = 2) X(Wg). + X(2) X(ug - 2).1b + x%(z) .x
(B15.4)

In addition to the incorporation of the deflection vectors in critical
areas involving subtractions, the rotor spin vector, z, has been subtracted
from the rotational velocity of SAX (w_) in critical areas, so that
accuracy will be preserved when Urbr is created numerically in a computer.

Expressions Bl5.1 through B15.3 defining the deflection vector (and its
time derivatives) can be differentiated with respect to S, yielding terms
(with primes) that have been defined in previous sections of this document.
Equations B9.l1, B9.9 and B9.10 can be used for derivatives of the BRL
position vector, b. Equations B9.2 and B9.8 yield expressions for the
derivatives of e,. Equation B9.7 provides an expression for the quiescent
BRL positional shape.

These definitions produce complete formulations for the deflection
vector and its time derivatives. In a computer analysis, the tensor
equations presented herein need to be expanded into scalar form. When this
is done, a number of important subtractions occur which eliminate the small
differences of large numbers that cause numerical problems., These
subtractions are best performed when the expressions are in their scalar
forms; the tensor definitions to not 1lend themselves to convenient
variations which allow the subtractions to be made explicitly.

The deflection vectors and their time derivatives are finally produced
in an analysis by integrating their primed counterparts with respect to S.




B.16 Collection, Reorganization and Summary of Rotor Models

The previous subsections of this document have presented derivations
for a general aeroelastic rotor model; the derivations have followed the
physical phenomena which give rise to the various elements of the model.

This subsection deals with collecting, reorganizing and summarizing the
models for convenient implementation in a computer program. Figure B.3 is a
signal flow chart showing "subsystems" of the rotor analysis, each
containing some of the math models previously derived. Lines among the
blocks carry nomenclature representing variables input to and output from
the various portions of the analysis. The analysis subsystems (or model
groups) have been given names and numbers, for convenience. Figure B-4
shows a flow diagram of the computations in the rotor model.

The nomenclature presented by Figure B.3 closely resembles the
engineering nomenclature appearing in previous subsections and summarized
by Table B.l. All the letters are upper case, however, and super/subscripts
have been eliminated. In this form the nomenclature is suitable for use in
actual computer code.

Some key conventions have been followed in converting the engineering
notation into computer notation. The nomenclature label always begins with
a letter. Characters following this lead letter character refer first to
superscripts and then to subscripts. Finally, numeral characters define
specific elements of vectors (one-dimensional arrays) or operators
(two-dimensional arrays). Note that the "dots" on the second-order arrays
in the engineering analysis are dropped in the computer nomenclature, being
replaced by two numeral subscripts.

In addition to these conventions, "primed" variables that are to be
integrated with respect to S have been given "I" lead characters for
"integrand”. The remainder of these labels follows the other conventions
listed above,

Two-dimensional arrays are to be processed by the computer as "packed"
arrays. The convention used herein is to pack by column, as is standard in
the Fortran language. In these cases, the array is indicated with a single
number in parentheses, where the number represents the total number of
elements in the array.

For example, the operator R. is represented in the computer variables
as R(9), which is a string of nine elements of R stored as three columns.

As stated above, the models developed in previous subsections of this
document need rearranging and collecting for computer implementation.
Tables B.8.1-18 present the models so processed, appearing still in
engineering notation, but with some changes. These changes (made to aid the
computer implementation) will be described in the following subsections.
Key assumptions incorporated in the analysis at this point are underlined.
The subsection numbers are keyed to the subsystem numbers of Figure B.3.

The mathematical model of the rotor has been expanded into scalar
equations and presented in Appendix F; these are the "physical equations".
The equations are presented under numerical subheadings which key to the
subsystem block numbers of Figure B.3.
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B.16.1 Blade Number Select

This subsystem produces the blade number of the rotor to be processed
in series by counting from 1 to N, . Additionally, the sine and cosine of
the angle rotating GAX to SAX for blade i are computed. Last, the state
variables (modal coordinates) for blade i are found in a memory region
storing these variables for all blades, and placed in a region to be used
in calculations for blade i.

B.16.2 Hub to Shank Transformations

Table B.8.2 summarizes a number of coordinate transformations used in
the model. An important feature incorporated in Table B.8.2 should be noted
-~ the subtraction of the rotor spin vector, z, from the inertial velocity
columns. This has been done to improve the scaling in the inertial velocity
processing further downstream in the analysis. The vector, 2z, is simply
subtracted from all of the rotational inertial velocity entities, and the
equations modified as required for consistency throughout. The parameter
WSMZI(3) appears in Figure B.3 representing w_.-z produced by the inertial
velocity calculations, so that 2z does not "mask small values in w

si
B.16.3 Radial Station Counter

This subsystem simply produces the parameter J counting from 1 to NR,
the number of radial stations used in the blade integrations on S. Radial
stations are those places along the BRL where physical parameters are
defined. Each set of physical parameters is identified with a specific S
value, for use in the integrations. Although not strictly necessary, it is
assumed that blade radial stations are equi-spaced in the rearranged rotor
analysis.

B.16.4 Radial Function Generator

This subsystem moves the physical data that is a function of S from the
complete data table to a smaller string to apply only to the present
station being analyzed, station J. This block transfer is made all at once
to avoid later repetitive use of indirect addressing to fetch these
parameters: addressing that is slower than immediate addressing which is
possible when all parameters for a station are consolidated in a physical
memory address space.

B.16.5 Blade Element Geometry

Expressions from previous derivations are collected for this geometry
section. The equation numbers associated with the models are 1listed.
Sometimes more than one equation number is listed, which indicates that the
noted expressions were rearranged to produce the result listed in Table
B.8.5. In most cases these rearrangements are straightforward and require
no additional amplification here.

Note that some definitions have been made in Table B.8.5. One is an
assumption on the form of the aray R_.. Firstly, it is assumed that there
is only one mechanical feathering control parameter, f=F. Additionally, R_.
is assumed to be a pure rotation about the number-1 BAX axis to move tge
BRL from the quiescent shape to the control shape. This is a good
assumption for most rotor systems.




It has been assumed that W'. has negligible effect, so it has been
dropped from Equation B9.1Z. Thif térm would fall out later in the analysis
anyway (where cubic and higher order terms in series representations of
trig functions are assumed negligible).

A series approximation'for sine and cosine of the feathering angle has
been made (equations for F_) which is very accurate for feathering
excursions between +-90 degreeS. Rotorcraft seldom see such excursions, but
propellers and wind turbines do.

B.16.6 Shank to Blade Transformations

Equations are gathered from previous derivations as indicated in Table
B.8.6. The equations are repeated without modification.

B.16.7 Distributed Inertial Loads

The inertial moment applied to the BRL is assumed gzero in this
collection; this is done because the inertial twisting moments are
invariably small as they influence loads applied to SAX. These moments are
significant in the blade torsional equations, but it is assumed here that
these significant effects have been relegated to the eigenanalysis portion
of the torsional analysis. In other words nonlinear inertial twisting
moments have been neglected.

B.16.8 Aero Geometry

The aero geometry equations have been rearranged to appear 1in
components of Mach number. The parameter R = 1/R_ (the reciprocal of
sonic velocity) has been introduced to elimindte the heed for division in
the time-domain solutions, so that components of velocity multiplied by
this factor yield components of mach number for the calculations.

B.16.9 Aerodynamic Coefficient Tables

As before, it is assumed that such tables and proper table look-up
routines are available for the analysis. Spanwise force and number-2 and
number-3 axis aerodynamic moments have been neglected as shown in Table

B.8.9.

B.16.10 Distributed Aerodynamic Loads

Equations have been gathered from previous analyses, as shown. The
modified loads column, p__, is shown composed of the modified force and the
unmodified moment vectors,

B.16.11 Loads Integrand Assembler

For ease in the computer analysis, the integrands in the loads radial
integral operations have been given special "primed" notation in this
subsection. Refer to the equations with numbers shown in Table B.8.11 to
see the origins of these integrand expressions. When converted to computer
nomenclature, these items will have an "I" lead character to denote that
they are integrands for radial integration.




B.16.12 Radial Integrations

These models simply indicate radial integration of those "primed"
integrands as required to produce final 1loads and deflection vector
entities.

B.16.13 Modal Coordinate Integrations

The blade motion equation is numerically integrated to calculate the
"g" variables as functions of time. As discussed previously, the nonlinear
portion of the model (now included in the generalized forcing function
vector, g, which was produced by radial integration) is held constant for
an interval of time associated with the numerical integration time step
size. The 1linear portion of the equation (Expression B8.17) is solved
exactly over the interval. This process provides for exact solution of the
powerful mass and stiffness phenomina, while the inexact
(transport-delayed) portion of the numerical solution is restricted to the
weaker nonlinear terms. This approach has worked well in past simulation
experience with the rotor blade motion equations.

Straightforward methods of ordinary differential equations can be used
to find the exact solutions. The values of q and q° are essentially initial
conditions which are to be refreshed to new values one time step, say D
away. Table B.8.13 lists the equations required to "move" the variables
over the interval. The expaessions are in terms of constants involving D
and the eigenvalues in E_“. Expressions for the constants used in the
solutions are also given *in Table B.8.13. These costants can be easily
determined in a preprocessing phase so that they do not impede the
performance of the time-domain analysis.

B.16.14 Multiblade Modal Combinations

These models have been taken without modification from the previous
derivations as indicated by the equation labels in Table B.8.14.

B.16.15 Multiblade Loads Combinations

Equations Bl4.12 and B14.13 derived previously have been separated for
convenience as shown in Table B.8.15. The summations of £ . and m_. among
all the blades in the rotor are made first. These components of thé total
gimbal 1loads due to radial integration are then added to the other
contributions (from multiblade coordinates) to produce the final gimbal
loads summation. A number of operators must be calculated that are
functions of rotor spin rate. The necessary expressions are shown, taken
directly from previous analyses without modification.

B.16.16 Gimbal Loads Summation

The expressions of Table B.8.17 are summations of the loads acting on
the outer gimbal ring.

B.16.17 Gimbal-To-Hub Transformations (Loads)

The expressions of Table B.8.17 are used in the gimbal analysis
presented in Appendix C.
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B.16.18 Gimbal Servo Integrator

Appendix D describes the technique used for the gimbal portion of the
analysis, where a "gimbal error" (the moment about a hinge that should
vanish or have a specific value) is driven to the correct value by a servo
approach. The gimbal error is multiplied by a gain (K ) to become the
gimbal acceleration.

As described in Appendix D, the concept works but can encounter
stability problems due to the transport delay associated with the numerical
integration process. The instability is also involved with the blade modal
degrees of freedom to a significant degree.

As discussed in Appendix D, small feedback terms from the multiblade
coordinates associated with the blade first flapping degree of freedom
stabilized the servo loop and resulted in good performance in reducing the
gimbal error to zero. Accordingly, terms have been added to the servo
equation of Table B.8.18 which incorporate the necessary multiblade
coordinates. The gains in these stabilizing feedback loops are input as
constants to the analysis; these have been given special nomenclature in
Table B.8.18.

The numerical integration of the gimbal acceleration to produce rate
and position is also described by equations in Table B.8.18. The constants
in Table B.8.18 can be obtained by an external preprocessing computer.



Table B.l NOMENCLATURE USED IN THE AEROELASTIC ROTOR ANALYSIS

General Nomenclature Conventions-

u

translational acceleration vector
translational velocity

rotational velocity

force vector

moment vector

generalized forcing function vector
normal coordinate vector

matrix of direction cosines

column of loads, force and moment vectors combined

General Subscript conventions

oo

o}

a

referring to the BRL quiescent shape
referring to the BRL control position
referring to aerodynamic entities

referring to inertial loading entities

Nomenclature definitions

Angle of rotation between BAX and the local wind, about the
the number-1 axis.

Multiblade operator producing a force or moment column by
operating on a multiblade coordinate vector.

Vector locating BAX with respect to SAX, resolved to SAX.
Perturbation version of b. b_=b - bOo

The b vector when the BRL is in its "control position”.

The b vector when the BRL is in its quiescent shape.

Vector locating the blade section center of gravity with
respect to BAX, resolved to BAX.

Scalar: local blade chord at S.




fa’ “ma
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s
b
e r e
2
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q
f
s
r
i
mi
a
ma
ao
g
F_., F

Aerodynamic coefficients: nondimensionalized force and moment
vectors for the blade section at S.

Modal matrices. D. produces the full six-element deflection
vector, w_, by operating on the modal column, q. D_.

and D, . p?oduce the angular and positional subvecfors

of Wy by operating on q; they are submatrices of D.

Elastic deflections: the first is a column of Euler angles
angles describing the rotary deflection of BAX from the
control position to the final position. The second column,
e_, is the translational movement of BAX from the control
position to the instantaneous (final) position, due to small
modal participation, q.

Diagonal matrix of eigenvalues (i.e., natural frequencies,
squared) for all the modes included in a finite blade model.

Force column. Subscripts denote the following:

acting on SAX

component of £_ due to radial integration

distributed fofce on the BRL due to inertial loading
"modified" inertial distributed forcing function
distributed force on the BRL due to aerodynamic loading
"modified" aerodynamic distributed forcing function
aerodynamic distributed force for BRL quiescent shape
force on the gimbal ring due to all blades, in GAX

.+ F ., etc.

sq sqd*’ qu" qud )

fso’ fz' fo

G_.
9]

GV" qu

Operators in the expression for force applied to SAX.
Columns in the expression for force applied to SAX.

The generalized forcing function for the 3jth normal mode of
vibration.

A column containing all the generalized forcing functions
incorporated in a finite mode model (all forcing functions
divided by their respective generalized masses).

or GZV" Gp" etc.

Operators in the expression for generalized forcing function.

The distributed inertial tensor for the blade element at S,
resolved to BAX.

Kernal function arrays: BRL stiffness functions. The first
is the general (nonlinear) function while the second is a
linearized version valid only for small deflections of the
BRL from its control position.
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Distributed blade inertial stiffness matrix that arises due

to movement of the blade element mass in the centripetal
acceleration field.

Moment column vector. Subscripts define the specific moment
column involved; similar to those for the force column, £.

Scalar blade distributed mass
Mach number of the blade section at S.
Distributed mass matrix which operates on the double time

derivative of the BRL deflection vector, w_, to produce a
contribution to the distributed inertial 16ading column, p;-
Generalized mass for the ith blade mode.

Diagonal matrix of generalized masses for all modes included
in a finite normal mode model for the blade.

2q"" qud" Mp., etc,

Operators in the expression for moment applied to SAX.
Column in the expression for applied SAX moment.

Number of blades in the rotor.

General loads column formed by stacking £ and m force and
moment column vectors. Subscripts listed under the "f"

definition, above, also are used to modify this loads column.

Pressure ratio: ratio of ambient atmospheric pressure to sea
level standard pressure (2116 psf).

Aerodynamic pressure at S.

Aerodynamic pressure times blade chord dimension at S.
Normal coordinate for mode 1i.

Column of normal coordinates for a normal mode blade model.
Multiblade coordinates: sine, cosine and steady entities.

Multiblade coordinates for q°: sine, cosine and steady
components.

Composite multiblade coordinate vectors made by stacking the
generic positional and velocity multiblade coordinate vectors.

Rotor blade radius
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none

as
ar
aa

bs

Rotational matrix of direction cosines. Subscripts are used
to further define the matrix by indicating the starting and
ending coordinate system in the rotations. Subscripts are
used as follows-

Rotate from SAX to the quiescent position of BAX.

Rotate from quiescent position of BAX to control position.
Rotate from SAX to the control position of BAX.

Rotate from the control position of BAX to final position.
Rotate from SAX to final (instantaneous) BAX position.
Spatial (line) coordinate measured along the BRL from SAX to
BAX. Represents the actual (line) span dimension when the
the blade is unloaded.

Time.

Acceleration of SAX with respect to IAX, resolved to SAX.
Acceleration of BAX with respect to IAX, resolved to SAX

Modified version of u,__ caused by reformulation to eliminate
small differences of ?grge numbers.

Translational velocity vector- subscripts as follows:

S:BAX,B:IAX,R:BAX

S:SAX,B:IAX,R:SAX

S:SAX,B:AIR,R:SAX

S:SAX,B:AIR,R:BAX. Assumes air moves as rigid body.
S:BAX,B:AIR,R.BAX. Local interference air motion.
S:BAX,B:AIR,R:BAX. Total local airspeed.

Velocity of sound.

Rotational velocity vector - subscripts listed under the v
translational velocity definition also modify w. Additional
subscripts on w are-

S:BAX,B:SAX,R:BAX

Elastic deflection vector (not a rotational velocity vector).
It is a generalized translational and rotational position
deflection for the BRL moving away from the control position.

Modeshape for the i-th normal mode of vibration.

Natural frequency of vibration for the i-th normal mode.
Matrix which operates on the time derivatives of Euler
angles to produce the rotational velocity of a subject axis
system with respect to a base system.

Deflection vector; the difference between the BRL position

predicted by a linear modal matrix and the actual position
(instantaneous position): a function of S and T.



bi

Z, Z

Cross product operator. X(a).b represents the vector cross
product between vectors a and b.

Scalar angle between blade number i and blade number 1. This
is a number-3 axis rotation between GAX and SAX for blade i.

Rotor spin rate. Subscript o denotes the quiescent value of 2.

Vector of all zeros except -Z in the number 3 position:
the vectorial rotor rotational velocity resolved to HAX.




Table B.,2 COORDINATE SYSTEMS USED IN ROTOR ANALYSIS

BAX- Blade Axes

Fixed to a blade element: origin identified along the BRL by the 1line
(spatial) parameter, S. Number-l axis points generally towards hub and is
tangent to BRL. Number-2 axis related to blade element by analyst, usually
parallel to the airfoil chord at S.

BRL~ Blade Reference Line

Locus of BAX origins along blade span- these points are considered fixed to
mass molecules of the blade sections, and are chosen within each section by
the analyst. The section airfoil quarter-chord point is a typical BRL
definition. The line parameter, S, measures the distance along the BRL from
the SAX origin to a particular BAX location. S is the actual length when
the blade is unloaded, but under loading, a particular value of S will
select the same BAX as would have been selected by that value of S when the
blade is unloaded.

GAX~- Gimbal Axes

Fixed to outer gimbal ring so that the number-3 axis is coincident with the
number-3 axis of HAX when the gimbal is undeflected. The negative number-1
GAX is on or near the projection of the BRL on the number-1,2 GAX plane,
for blade number-1 in the rotor. GAX and rotor axes (RAX) are coincident
when the gimbal is undeflected. For teetered rotors with a delta-3 angle,
GAX is not aligned with the teetering axes (see the definition of TAX, and
also Appendix C)

HAX- Hub axes

This frame is fixed to the support system of the rotor so that its number-3
axis lies coincident with the rotor shaft. The origin is inside the hub as
near as possible to the closest point between the BRL and the shaft
centerline. This HAX origin is the "reference point" for the rotor. Motion
entities for HAX are defined to the rotor analysis; loads applied to the
supports by the rotor (resolved to HAX) are produced by the rotor analysis.

IAX- Inertial Axes

A Newtonian frame fixed to the stars (i.e., Newton's second law of motion,
f=ma, holds in this frame).

RAX- Rotor Axes

The origin is coincident with the HAX origin as are the number-3 axes. RAX
spin with the rotor a rate 2 about the negative number-3 axis.

SAX- Shank Axes

The origin is coincident with the GAX origin, as are the number-3 axes. SAX
are rotated about the negative number-3 axis the angle Y, . so that the
negative number-l1 axis lies under the BRL projection onk¥he number 1,2
plane for blade number i. SAX for blade number 1 are coincident with GAX.

C-3

B-43



Detailed definitions of the following axes systems are given Appendix C.

TAX -~ Teetering Axes

The origin is coincident with the RAX origin, as are the number-3 axes. TAX
are rotated the angle Yc about the number-3 axis from so that the TAX
number-2 axis is parallel” to the teetering hinge.

CAX - C Axes

Fixed to the outer gimbal, and coincident with TAX when the gimbal is
undeflected.

TUAX, CUAX - Axes system which account for rotor undersling.




Table B.3

Geometry

b*'

b**

FUNDAMENTAL ROTOR MODEL - EQUATION SUMMARY

]
L)
<

(l).Da.

-R". X (wbs) -1,

R, S cy s
= RO )+ X () )y

Generalized Forcing Function

-l T
g-rag._/'gn.pnds

Blade Motions

q

Shank Loads

2
+ E . =
£q 9=9g

f
s

m
S

—R
/o (£, +£) ds

R RM)(E, + £) +m +m ) ds

Nonlinear Distributed Loads

Pn

=p. + M, w'
Py M e

- /‘R

- 0

+ KI. we + pa - po

(B3.1)
(B3.2)
(B9.1)
(B9.2)
(B9.3)
(B8.19)
(B9.8)
(B9.9)
(B9.10)
(B9.11)
(B9.12)
(B9.13)

(B9.14)

(B8.18)

(B8.17)

(B10.1)

(B10.2)

(B8.3)



Table B.3 (continued)

Distributed Inertial Loads

T. .
f. = -Mb (ubr + R. (X(wb)

br s
ug = Vg + X (ws). Vg
T T.,T

m,

p; = (£, m

)

Distributed Aerodynamic Loads

=
[\
il
<
N
+
o
uv
~
Y

a2
= tan ! (V_,/V_.)
Ab a3l a2
Q = 1481 M2 P
a r
Qac = Qa Cb
c. =

fa - ®fa (A /M)

(9]
|

ma - “ma (Ab’M)

_ T T
fa = Qac R, R1 (Ab). Cea

= Qac Cb cma

o
(]

T T,T
(£,.m)

. + x

2

m, = —Mb X(cg). R. ur + Ib.wb + x(wb).I

(wb).) cg)

b*Yp

_ . . . 2
=u_+b"" + 2x(ws).b + x(ws).b + X (ws).b

(B6.1)
(B6.2)
(B6.3)
(B6.4)

(B6.5)

(B7.1)

(B7.2)

(B7.3)

(B7.4)

(B7.5)

(B7.6)

(B7.7)

(B7.8)

(B7.9)

(B7.10)

(B7.11)




Table B.4 CONSTANT OPERATORS FROM RADTAL INTEGRATIONS

Generalized Forcing Function Operators

o2 -1 T ,
%o = %o Mg+ /oM Dp. (I - I,.) boo ds

ool R T
Gv.-ZMg./—MbD.X(z)
GZV.=+2ZM /—RMbD.X(l) pe ds

2 .-1 R
qu. +27 Mg /' MbD . (1. - I;.) D.. ds

Shank Force Operators

Fyo = -_/‘g M D,. ds

F,o =-2/5 M X(z).D

Fo. = /o M X(i). D.. ds
Fpe = -/ oM %Xz ). D

Fapr = *lo /R M (I = I, p_. ds
fsao = '—/_5 faO ds

L]
]

2 R

~—R 2
in -_/ o Mb X (Zo).

Shank Moment Operators

My = -/ be(boo).ub. ds

My =<2/ 8 MX(b_ ). X(z_).D,. dS

M. = +2zo_/‘§ M X(b_ ). X(i,).D . ds

M. == /Ty M (x(b_ ) .xz(zo)+z§x((1. = I3.)b ) )4K(E, ) .ID, . dS
M. = +2 /“R M [R(by ). (T, = I5.) = X((I. = I3.)b, ).1D, . ds
Mo =/ oXlb, )£, as

M, = zg_/‘g M X(b ). (I. - I,.)b__ ds

4
—
i

R 2
-_/_O M X(b ).X"(z).b_ ds



Table B.5 CONSTANT AGGREGATES

Shank Force

]
[}

(F..+F..G..) N

qd” v u" v b
qud' = (FZV. + Fu. GZV.) Nb
P = (Fpe - Fy. E(ZI.) N,
qu. = (sz. + Fu' qu.) Nb
fz = (fzo + Fu‘ gbo) Nb
fo = (fio * fsao) Nb

Shank Moment

qu. = (Mv. + Mu' GV.) Nb
qud' = (MZV. + Mu. GZV') Nb
Mq. = (Mb. - Mu Eé.) Nb
qu. = (Mzb. + Mu' qu.) Nb
m, = (mzo + Mu. gbo) Nb
m, = (mio + mao) Ny

Table B.6 AGGREGATE OPERATORS WHICH ARE FUNCTIONS OF RADIUS

- -1 T
Fp = I. + Fu' Mg' Db
= -1 T
Mp. = X(boo) + M Mg. Db.
-1 T
G.=M7_D.
p g9




Table B.7 STIFFNESS FUNCTIONS

T T.)T

Ked. = Ke (f,q"S,N)o - Kep (S’N)o = (Kfed.,Kmed

_ -l T
G (E,@. = M /2 0%s). Rk . paw. av as

R
N,/ _/'g Kfeg- D(N). dN dS + NF . G

Fsk(f,q). K

My (£ . = -N _/'E [x(b)._/"‘; Keege D(N). dN

+ /g Koog DML aNIdS + NM .Gy -

Table B.8.1 BLADE NUMBER SELECT (Subsystem 1.1 of Figure B.3)
a) Produce the blade number count, i

i=1,2....N

b) Produce the trig functions (sine and cosine) of Ybi’

sin Ybi = sin Yb cos ij + cos Yb Sin ij
cos Ybi = COS Yb cos ij ~ sin Yb sin ij
j=1-1 Constants: sin Yb' cos Yb

¢) Load individual blade modal coordinates q(Nm), q'(Nm),

q"(Nm) into staging area qi(Nm), qi(Nm), qi'(Nm)

=~}
|

49



Table B.8.2 HUB TO SHANK TRANSFORMATIONS (Subsystem 1.2 of Figure B.3)

Inertial Velocity Operation
Vt = R3 (Yt)' Vh HAX TO TAX
w, - 2z= Ry (Yt)‘ W
Vea = Ve T X3 (Zu). (wt—z) TAX TO TUAX
W T2 =W oS z
Vau = R2 (Qg)' Veu TUAX TO CUAX
W, ~ %% R, (Qg). (wtu—z) + Iz.Qé + R, (Qg) zZ -2
Ve = Voo t X3 (Zu)’ (wcu—z) CUAX TO CAX
W, -2 =W, T2
Vg = Ry (¥ ). Vo CAX TO GAX
wg -z = R3 (—YC). (wC - 2)

VSi = R3 (-Ybi). Vg GAX TO SAX
Wey —ZF R3 (—Ybi). (wg - 2)

Rotor Speed Variables:

z=100,0 -0T: 2 =0(0,0 297 5 2=3 %2+
Geometry:

Y =¥ - ¥ Yy =R Ay Yopi = Yo * Ybi
Control:

F. =C. -C.cos Y, -C., sin ¥,
i 1 3 i




Table B.8.2 (continued)
Aerodynamic Velocity
Vap = R3 (Yt). Vah
W R3 (Yt). wah + z
vatu = Vae X3 (Zu). W
Yatu = Yat
\

ac acu 3
W =W

ac acu
vag = R3 (-YC). vaC
wag R3 (—Yc). wac
vaSi = R3 (—Ybi). v
waSi = R3 (—Ybi). W

Time Differentiation‘: Inertial velocity

ag

ag

at

- X2 (Qé). wtu) + IZ'Qé.

tu)

vé = Ry (Yt). (vﬁ - X(z). Vi)

Wl o= Ry (Y ). (w - X(2). W)tz

th = vé - X, (Zu). wé

Weg = W

vcé =R, (Qg). (vtl'l-x2 (Qé). v
c& = RZ (Qg)' ‘Wtd

vé = vc& + X5 (Zu). wcé

Mo = ey

vé = R3 (—YC) vé

wé = Ry (—YC) W

Vsi = Ry (—Yb ). v

wsi = R3 (—Ybi). 1

Operation

HAX TO TAX

TAX TO TUAX

TUAX TO CUAX

CUAX TO CaxX

CAX TO GAX

GAX TO SAX

Operation

HAX TO TAX

TAX TO TUAX

TUAX TO CUAX

CUAX TO CAX

CAX TO GAX

GAX TO SAX



Table B.8.3 RADIAL STATION COUNTER (Subsystem 1.3 of Figure B.3)

Produce the radial position count: j =1,2, ..., Nr

Table B.8.4 RADIAL FUNCTION GENERATOR (Subsystem 1.4 of Figure B.3)

Move all radially dependent functions from tables to a
staging area for each j. The functions are,

Function Size
R . 9
00
Rfs 1
%*
Da 3 Nm
*
Db' 3 Nm
b 3
00
*
Gp. 4 Nm
F_. 9
p
M. 9
P
3
ao
Mb 1
Cb 1




ea = Da. q

€a Dy

e =D, o

& =D, 9

e = Dp T

° =Dy, a7

Ro. = RF (F - Fo). ROO'

Re' = Re (e))

R = Re. Ro.

Rg. = By (F).

Rp. = Re. -I.+ X(ea).

bp =X + e,

b* = x" +ef

b =b, + b

Wps = wy(ea). e

W = W (o). el

x' =R (-R.. (Rp. - I.) —Rg. N
X' = (-RT XG0 ).+ RL.X(e]). )i,
"= (RT (xR X(e]

Trig Model for Feathering Factor, Fs

.

)i

FS = (F-Fo) RfS (S)
= FZ
sq s
SF = sin F = F * (1 - qu(l-qu/ZO)/6)

0
Lo ]
1]
Q
[0}
n
)
)
]

1- qu(l—qu/IZ)/Z

1

Table B.8.5 BLADE ELEMENT GEOMETRY (Subsystem 1.5 of Figure B.3)

(B9.3)

(B9.2)

(B3.1)
(DEFINITION)
(B3.2)

(MODEL DEFINITION)
(DEFINITION)
(B13.14, 15.1)
(B15.2)

(B13.14)

(B9.11)

(B9.12)

(B15.1,9.1,9.8)
(B15.2,9.9,9.8)

(B15.3,9.10,9.8)

(DEFINITION)
(DEFINITION)
(MODEL APPROX.)

(MODEL. APPROX)



Table B.8.6 SHANK TO BLADE TRANSFORMATIONS (Subsystem 1.6 of Figure B.3)

vy = R. (vas + b+ x(was). b) + Vaa (B7.1,2)

u = vé + X(W_ - z). vy + X(z). vg (B6.4)

wS - 2= wsi -2 (DEFINITION)
wé = wéi (DEFINITION)
Vas = Vasi (DEFINITION)
was = wasi (DEFINITION)

Table B.8.7 DISTRIBUTED INERTIAL LOADS (Subsystem 1.7 of Figure B.3)

umbr = us + X + ZX(ws - z). b® + 2X(2). x* + x(ws). b

2
+ X(ws - 2Z). X(ws). + X(z). x(ws -2). )b + X" (2). %

(B15.4)
£ .= My Un (B12.2)
T T.T
Pni = (fmi’ mi) (B6.5)
m, =0 (ASSUMPTION)




Table B.8.8 AERO GEOMETRY (Subsystem 1.8 of Figure B.3)

M2 = Va2 va {DEFINITION)
M3 = Va3 va (DEFINITION)
o=l (B7.3)
sin A = M3 / M (B7.4)
cos Ay =M, /M (B7.4)

Table B.8.9 AERODYNAMIC COEFFICIENT TABLES (Subsystem 1.9 of Fiqure B.3)

Logical operations on sin Ab and cos Ab (select one) for table
look-up operand. Pointers to proper tables are also established by this
logic. The selected operand O, (either sin Ab or cos Ab) is used with M for

. . A
three bivariate look-ups.

Crap = Crapy (Opr M (B7.7)
Ceaz = Cgaz (Opr M

Crap = Crap (Opr M (B7.8)
Cea1 = Cmaz = a3 = 0

Table B.8.10 DISTRIBUTED AERO LOADS (Subsystem 1.10 of Figqure B.3)

0, = 1481 M PG (B7.5,6)
=0, RIR(A ). Cop - £ (87.9,12.3)

m=9%.% %na (B7.10)

p = (£, m)T (87.11)°




Table B.8.11 LOADS INTEGRAND ASSEMBLER (Subsystem 1.11 of Figure B.3)

gr' = Gp. (pmi + pma) (B13.6)*
£ = F (813.8) "
m.t s 0.+ X)) £y
+ x(bp).(-Mb(el‘)' + X(2).(2 ek') + X(2). eb)))
+ X0 . (4 x2(2). b+ £, ) (B13.13,1,2)
fmb = fmi + fma *(DEFINITION)

Table B.8.12 RADIAL INTEGRALS (Subsystem 1.12 of Figure B.3)

X = _/—f) X' dw
X' = _/_g x*' aw Geometry (Definitions)
o = _/—g £t W
_ MR, N
9y = _/ o Ir ds Modal (Definition)
Gimbal Loads (Definitions)
R
m, = —/—o m_' ds




Table B.8.13 MODAL COORDINATE INTEGRATIONS (Subsystem 1.13 of Figure B.3)

Solve for every blade, i, i=1,2,..N

b

9y =9y * (B Gpye +Gyo) g + 2, (g + CGpqr 93!
95; = 4 (save qi)

. = . g+ (R_ .+ Jal + o+ g,
9 qu dg4 (qv zp quv )ql (qu zp qug )g1
q; = Kyye 95 + (qu.+zp szq.)qsi + (Kvg.+zp szg')gi
9 =~ Egr 93 * 9

!

Expressions for the constants in Modal Coordinate Integrations:

Given: Po, Zo, Dt' KPZ' NIS' qu, Gq
Solve: Y, = Z, D, S, = sin (A) W=P 2z

A = PY, C, = cos (A) P=NgP,
Unconstrained (NIS > 0) Constrained (NIS = 0)
Kyq = Ca W= W+ Sy
Rqu = 53/ W Ty = Cga / Vo
Reg = (1-=C,) / W Rqq = SXB(-Yy/(T_ 2.))
qu = =W va =0
Kvg = va quv =0
P = (2 K +P) /W K= (1.-K_) / W
pzp o P2 a9 qq m
quv = ZO Ppr (A Ca - Sa) va =0
qug = ZO Ppr (ASa+2Ca-2)/W qu = —l./Tq
Kozq = ~%0 Ppzp Kyg = 1‘/(§q W;) A
Kyzg = Kqav Kozg = ~2% ¥pz / W Cqa
Eé _— Kyzg = 0
Kov = Ca Kqzg = O




Table B.8.14 MULTIBLADE MODAL COMBINATIONS (Subsystem 1.14 of Figure B.3)

qg = (I/Ny) 3, q; sin ¥,
9o = (W/Ny) 3y q; cos ¥
q, = (I/N) > q,
dgs = (/N 2; qf sin ¥,
e = (/M) 2; qf cos ¥
qdo = (l/Nb) E& qi

_,T T T.T
qm = (qor qC' qs)

T T T.T
g = Qgor Y5cr 938’

(B14.3)
(B14.4)
(B14.5)
(B14.6)
(B14.7)

(B14.8)

(B14.9)

(B14.10)

Table B.8.15 MULTIBLADE LOADS COMBINATIONS (Subsystem 1.15 of Figure B.3)

gr = 25 Ryl¥py) £py

= 31 R3(Ybi) m

Hh
|

3
|

gr ri

(B14.12)

(B14.13)

Table B.8.16 GIMBAL LOADS SUMMATION (Subsystem 1.16 of Figure B.3)

*
fg = fgr + Am(FSq.). 4, + Am(qud')' I * 13. fso (B14.12)
mg = mgr + Am(qu.). 9 + Am(qud’)' g + I3. L (B14.13)

0 Al A2
where, Am (A.). = 0 A2 —Al
i °!
sq’ = Fq. + qu. ZZ (B13.10) qu. = Mq. + qu. Zz (B13.15)
sqd” = qu. + qud' Zp (B13.9 ) qud' = qu. + qud' Zp (B13.16)
fso,= fz zz + fo (B13.11) M, =M, Zz + m (B13.17)
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Table B.8.17 GIMBAL LOADS TRANSFORMATIONS (Subsystem 1.17 of Figure B.3)

fc = R3 (Yc). fg

| -
m, = R3 (Yc). mg

| -
fcu - fc
m., = M. + x3(Zu). fc
f =

- R (-Qg)' feu

m., = R2 (-Qg). L,
fe =ty
m =m + X3(-Zu). ftu
£, = Ry (-Y%,). £,
m = R, (=Y. ). m
By = iy Moy
Yt = YC -Y

Table B.8.18 GIMBAL SERVO INTEGRATOR (Subsystem 1.18 of Figure B.3)

i=NM+1, j=2 % NM +1

Qé. ng Eg * Kgqc Omi * Kggs Qmj * ngc Onai * ngs dej

ng = Qg (save Qg)

= o+ +2 c
g qu ng + (qu+zp quv)Qg (an p qua)Qg

Q3 = Gyy Qg + (GyqtZy, Gypg)Qq + (Gyqa*Z, Gypa)Qg

[ @
|
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Presented in this Appendix is an analysis of the "gimbal kinematics",
and the the manner in which the blade root loads contribute to a "gimbal
error". The kinematics equations depend specifically on the detailed design
of the gimbal which, of course, can take many arrangements.

Two relatively common systems are analyzed below. These are the
teetering (with "flap-pitch coupling" and "undersling") and the focused
floating gimbal.

C.l. The Teetering System

Figure C.1 depicts the classical teetering rotor system with flap-pitch
coupling (Y ) and undersling Z_. The fiqure also presents some of the
various axis systems used in theé kinematic analysis. "Rotor" axes (r) are
shown in the conventional position. Rotor axes are fixed to the shaft, with
I, coincident with the shaft centerline.

"Teetering" axes (t) are also fixed to the shaft, but have been rotated
by the angles Yc about t3, so that t2 is parallel to the teetering hinge.

"C" axes are fixed to the gimbal outer housing, as are the rotor
blades. When there is no gimbal deflection (i.e., = 0), C axes are
coincident with teetering axes, but as the gimbal movegy the C axes rotate
with respect to teetering axes, by the angle Q . Note that, if there is
undersling, then C axes also translate with réspect to teetering axes.

Figure C.2, used later in the analysis, presents a clearer view of the
relationship between teetering and C axes.

"Gimbal axes" (sub g) are fixed to the outer gimbal ring (blade-root
mounting ring), but are rotated the angle -Y_ from C axes about g,. Hence
gimbal axes appear to the rotor blade analysis, exactly as rotor axes would
with no gimbal present.

To help further clarify the definitions of these various coordinate
systems, Table C.l1 summarizes the systems and presents abbreviations and
subscripts used throughout the subsequent kimematics analysis.

"Shank axes" (s) associate with each blade shank - the region of the
blade connected to the outer gimbal housing. For blade number i,
i=1,2,..N_, the shank axes are rotated Y about g, from gimbal axes. The
projection of the blade reference llne bn the 1f5 plane generally lies
along the negative sl axis.

C.l.1 Motion Transformations

The reader is directed to Appendix A, which presents general procedures
for entity definitions and transformations. These standardized methods are

convenient for derivation of equations in a form suitable for direct
computer programming.

Figures C.1 and C.2 have been used to derive the motion transformation
expressions of Table C.2 in accordance with the procedures of Appendix A.
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Figure C.l. Conventional Teetering Rotor Hub
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Figure C.2. Coordinates and Notations for Motion Summation



C.l.2 Loads Transformations - Gimbal Errors

Loads produced by all blades in the rotor are applied to the outer
gimbal ring at the blade shanks. These loads sum to resultant force and
moment columns resolved to.gimbal axes. The loads transformation equations
convert the gimbal loads resolved to hub axes, representing the forces and
moments the rotor applies to its supports. Table C.3 presents the loads
transformations. Note that a "gimbal error" load 1is also provided.

The presence of a gimbal in the system essentially introduces into the
dynamics equations a requirement that certain moments acquire specific
attributes. For example, a simple free teetering system requires that the
moment about the teetering hinge vanishes. If the hinge motion is
constrained, the moment remains zero between stops and then acquires the
attribute of a very stiff spring upon contacting a stop. Other attributes
can also be demanded by the design of the gimbal. An example is a system
with a spring installed about a gimbal axis.

The loads transformation expressions of Table C.3 produce the moment
about the teetering axis as a gimbal error function: BAn external
calculation (the servo) converts this error into a gimbal acceleration to
produce the desired.overall system behaviour.

C.2 The Floating Gimbal

As described previously, the detailed design characteristics of the
gimbal system must usually be considered in the dynamic math model of such
a system. The teetering gimbal was analyzed in Section C.l. The same basic
expressions derived for the teetering system are easily expanded for use in
analyzing a hypothetical "floating gimpbal" with two degrees of freedom.

Figure C.3 shows the floating system with a "focal point" not at the
center of the rotor hub. As such, this system is similar to the teetering
system, except that it frees the moments in the ball joint in two
directions and, hence, has two-element gimbal error and degree of freedom
columns.

Figure C.3 = Sketch of Floating Gimbal System




The math model of the floating gimbal is very similar to that of the
teetering system. The gimbal degree of freedom variables , Q , Q°, and Q°°
now become vector columns with two non-zero elements, repres%ntiﬁg motiofs
about both the t, and t, axes. The transformation array R,, must be
expanded to consid%r an l—gxis rotation also. The new transformdtion matrix
R,,, can be used in place of R, in the previous equations. If the first
e}%ment in the q_ column, Q 17 represents the 1l-rotation and Q the
2-rotation, the new transformation array is written: 92

R12' = Rl(le). RZ(QgZ).

With these definitions, the teetering matrix equations can be applied
directly to the floating system.

The gimbal loads expressions can also be applied; in this case the
two-element gimbal error column is composed of both 1 and 2- axis
components of the moment at the ball joint.



Table C.1 COORDINATE SYSTEMS USED IN GIMBAL SYSTEM ANALYSIS

No. Name Abbreviation Axis Fixed To
Label

1 Hub Axes HAX h Nonrotating Frame

2 Rotor Axes RAX r Rotating Shaft

3 Gimbal Axes GAX g Quter Gimbal Ring

4 Shank Axes SAX S Outer Gimbal Ring

(s3 coincident with g3)

5 Teetering Axes TAX t Rotating Shaft

6 C Axes Cax c Outer Gimbal Ring

The following axes systems account for the rotor undersling.

7 TU AXes TUAX tu
8 CU Axes CUAX cu

HAX ... Origin and h., coincident with corresponding RAX entities, but HAX
do not spin wWith the rotor. HAX are rotated the angle Y from RAX
about h3, where Y = 2 T and Z is the rotor spin rate.

RAX ... Origin at hub center when gimbal is undeflected. Negative r. axis
lies under blade number 1 projection on the shaft normal blane.

GAX ... Origin and g. axis coincident with corresponding CAX entities.
Rotated an angie Yc from CAX about the C., g, axis. As defined, GAX
are coincident witll RAX when gimbal is un%efiected.

SAX ... GAX rotated Y, . about g, for each blade, i, to become shank axes
for blade 1i. Sgénk axes for blade number 1 are GAX.

TAX ... Origin and t. coincident with r_, and RAX origin. Rotated the angle

Y (about t.% from RAX so thag t., is parallel to the teetering
hinge.

3 2

CAX ... Coincident with TAX when gimbal is undeflected.




Table C.2 HUB TO SHANK MOTION TRANSFORMATIONS

Inertial Velocity

Ve = R3 (Yt)' Vh

w, =R, (Y,). w + 2

t 3 t h

Vg = Ve X3 (Zu). W,
Yeu T Ve

ch = R2 (Qg)' vtu
Wy = R2 (Qg). Wy ¥ 12.Qg
Ve " Veu T X3 (Zu)’ (wcu-Z)
W =W

c cu
V. =R, (-¥)., v

g 3 o] o]

wg = R3 (—YC). W

V.=R, (-¥..). Vv

bi g

Rotor Speed Variables:

z=1(0,0 -2T; z°=(0,0, -2

GCeometry:

Control:

F.=C, -C,cos Y. -C
1 i

1 2 3

‘N Y.
S1 Yl

Operation

HAX TO TAX

TAX TO TUAX

TUAX TO CUAX

CUAX TO CAX

CAX TO GAX

GAX TO SAX



Table C.2 (continued)

Aerodynamic Velocity

Vae = Ry (Yt). Vah

Vo = Ry (Yt)' Won * 2
Vatu = Vat T %3 (Bg)- Vat
watu = wat

Vacu ~ R2 (Qg)' Vatu
W = R2 (Qg). Yo T I2
Vac = Vacu * X3 (Zu)' Yac
Wac = Yacu

vag = R3 (—YC). Ve

wag R3 (—YC). Voe

Vasi = R3 (TYpi) Vag
Wosi = R3 (-Ybi). wag

.Qg

u

Time Differentiation - Inertial Velocity

<
1

<
It

£
|

Ry (Y,). (vé - X(z).
= R, (Yt)' (wé - X(2).

=V, - X3 (Z ) W

= wé

= R, (Qg). (Ve

= Ry Q). Wy - %

Veu + X3 (Zu)’ wcu

W "
cu

R3 (—Yc). v

C

=R, (-Y ). w’

3 C c

=R, (-¥, .). v’

3 bi g
= R3 (—Ybi). wg

'—X2 (Qé). v,.)

vh)

wh) + Z

tu
(Qé). Wtu) + Iz.Qé'

Operation

HAX TO TAX

TAX TO TUAX

TUAX TO CUAX

CUAX TO CAX

CAX TO GAX

GAX TO SAX

Operation

HAX TO TAX

TAX TO TUAX

TUAX TO CUAX

CUAX TO CAX

CAX TO GAX

GAX TO SAX




Table C.3

= R2 (-Qg). m,

GIMBAL LOADS TRANSFORMATIONS

m, + x3(Zu). fC

u

ftu

m_ o+ X3(—Zu). f

tu tu



APPENDIX D

GIMBAL SUBSYSTEM DYNAMICS

The Appendix contains the "Test and Verification Report: A Gimbal Subsys-
tem for the Wind Energy System Time-Domain (WEST) Analyzer" by John A. Hoffman
(PPI-1640-3; December 1979). Analysis included herein form the bases for the
gimbal servo algorithms presented elsewhere in this report for use in solving
the aeroelastic rotor math models including gimballed articulation.



1.0 INTRODUCTION

This report documents the experimental implementation of a
rotor gimbal subsystem into the Wind Energy System Time-Domain (WEST)

analyzer. The WEST 2 unit was used in the implementation.

References 1 and 2 document the math models and hybrid
computer.implementation diagrams for the WEST 1 and WEST 2 simulator units.
The original WEST math models embraced articulated and hingeless rotor
blade retention systems; gimballed rotors (teetering or floating) were

not addressed by the original simulators.

Subsequent to the design of the initial WEST concepts,
teetering emerged as a viable design alternative in U.S. wind energy systems.
Thus, an additional subsystem was designed for ths WoST units that would
allow them to analyze teetering rotors. Reference 2 presents the math

model derivations and hyorid program diagrams for the teetering subsystem.

The teetering subsystem for th= full analysis was simprlified
to an "abbreviated" system, so that it would fit on a single General Purpose
Electronic System /GPURS). The GPURS implemerntation had tha purpose of
proving the concept of the gimbal subsystem, pricr tc its being hardwired

in its complete form within the WEST units themselves.

This report deals with this abbreviated GFURS implementaticn,
which is valid if the rotor shaft remeins fixed in space.* Although
abbreviated, the system proves the feasibility; of the concept so that the
full system can be hardwired with confidence, without further feasivility

testing.‘

Although considerable difficulty was encountered with the
dynamic stability of the gimbal/WEST simulation, techniques were developed
which enabled the system to perform very well.

¥*
The full subsystem allows shaft motions.
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The remainder of this report is organized as follows:

Section 2.0 presents a description of the basic gimbal
subsystem, drawing on the detailed developments in Reference 2.

Section 3.0 presents psrformance results, in the form of
oscilloscope photographs, which show correct operation of the gimbal
subsystem in a closed-loop simulation with WEST 2.

In Section 4.0, ths technical problems encountered in
implementing the gimbal subsystem and their solutions are presentead.

Section 5.0 presents conclusions and recommendations for the
future of the gimbal subsystem in the WZST units.



2.0 DESCRIPTION OF THE GIMBAL SUBSYSTEM FOR WEST

Reference 2 presents the complete derivation of the equations
for the WEST gimbal subsystem and hybrid computer implementation diagrams
for the subsystem. The gimbal subsystem is essentially a "drop-in" package
between the existing rotor analysis and the shaft support system math models.
Configured in this way, only minimal modification of existing hybrid systems

(for the wind turbine and shaft supports) is required.

Figure 2.1 presents the fundamental technique incorporated
in the gimbal subsystem. The existing rotor analysis calculates the loads
that blades place on the rotor hub. Proper resolution of these produces
the total moment about the teetering hinge, which should be zero because

of the hinge. This moment is called the "gimbal error,” .

WEST

Hud Mctions ROTOR Hub Loads
| - SYSTEM :
|
P b -v'—-—----—--—-—-—--——--—----—-——-——-—--——--——------: ------------
!
- Y
CALCULATION o | carcuraTION l
OF HUB | OF GIMBAL
MOTIONS f————— f ERROR
l }

HIGH-GAIN
~4—0— TRANSFER

- FUNCTION
e e o e e e e e e o o = v o = e v e - = . = - - o - = -~ - = = - - - - " - -
Shaft Motions
(From Nonrotor
Structure (NRS) Z'--—-----—-Gimbal Subsystem
Subsystems

Figure 2.1 - Basic Configuration of WEST Gimbal Subsystem




The gimbal acceleration,';, is calculated by multiplying the
error by an arbitrarily large gain so that for practical ; values, € —» 0
as the gain becomes higher. § and 7 are produced by integrating';, and
these three gimbal motion entities are combined with motions of the shaft

to produce rotor hub motions. Rotor hub motions feed back to the rotor
analysis, closing the loop.

Figure 2.2 presents a simple model of the rotor blades,
assumed perfectly rigid for the example.

quantitative version of Figure 2.1, using

Figure 2.3 shows a more

the simple rigid rotor representa-
As is easily perceived from Figure 2.3, ¢ - 0 as A -, so that the
system solves the equation

tion.

£ = Iy +dy +

as the loop gain, A, is increased.

>

z ‘ € = -I; - d& -k + f

Figure 2.2 - Simple Quantitative Model
For Windturbine Rotor
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Figure 2.3 - Gimbal Analysis With Simplified
Rigid Rotor Model

The final implementation diagrams for the abbreviated gimbal
system are presented in Appendix A. These diagrams embrace the concept of

Figure 2.1, using the detailed transformation expressions of Reference 2.




3.0 FERFORMANCE OF THE ABBREVIATED GIMBAL SUBSYSTEM

After some modification (described in Section 4.0), but
with the basic concept intact, the abbreviated gimbal subsystem was found
to perform well with the WEST 2 rotor and NRS systems. Figure Series 3
presents oscilloscope photographs which document the performance of the

full coupled system. These results are discussed below.

"Nominal conditions" have been used in Reference 3 to correlate
WEST with other analyses. These conditions include a windspeed of 27 mph,
LO rrm rotor speed, 100 percent shadow retardation through an 18-degree
sector, and 20 percent windshear profile. Normalizing parameters on the

traces are

=
[}

Rotor Radius = 62.5 ft

=
]

Normalizing Thrust = 5,000 1lb

Figures 3.1 and 3.2 show nominal operating corditions with
gimbal on and off. Note the reduction of the gimbal error of Figure 3.2
(gimbal off) when compared to the trace of Figure 3.1. The high frequency
"serpentine"* mode is the predominant error functiocn. Figure 3.1 reveals
that this lightly dampad mode has a frequency of about 16 hz. This mode
is excited twice per rev by the shadow effect, which prcduces an impulsive
forcing function on the system. The serprentine ringing does not appsar if
the shadow effect is off, and only windshear (which is a pure 1P signal

with no impulse) turned on.

Figures 3.3 and 3.4 reveal the performance of the gimbal system
in reducing 1P gimbal errors. Figure 3.3 shows a case with extreme windshear,

producing a 1P gimbal error of about 7v peak when the gimbal system is off.

*The serpentine mode is the high frequency mode where the gimbal moves in one
direction, and the blade flapwise btending modes move in opposite directions.
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With the gimbal system turned on, the error is reduced substantially, as
shown by Figure 3.4. A smaller scale on error revealed that the 1P gimbal
error is reduced to about 50 mv peak. Hence, the closed-loop gimbal sub-

system reduces gimbal errors by over a factor of 1000, or 60 db.

Figures 3.5 and 3.6 reveal the benefits of the gimbal in
reducing blade root flap bending moments. The peak to peak moment with the
gimbal is about 3v. Without the gimbal, the moment is about 3.8v, so the

gimbal reduces the moment by about 27 percent.

tudies of Reference U4 indicated a potential berefit of reducing
blade root out-of-plane bending moments by l’2;lusing gimballing. This
benefit is realized only for bending ncrmal to the plane of rotation. The
mements in Figures 3.5 and 3.5 are measured parallel to the blade chord,
which is situated at an angle of about 30 degrees with respect to the normal
plane. Hence, half of the 1P gravity mcment is suprorted as a 1P flapwise
bending moment at this station, and this moment is not relieved by gimballing.

The gravity moment in the MOD-0 is atout L5,000 lo-ft peak, so
its contribution to Figure 3.5 is roughly 2(45,000)(.5)(10)/62.5/5000 =
1.4k v p to p. Removing this 1P component in the flap moment would produce
a 2.36 v pp value with no gimtal, and about 1.56 value with the gimbal. The
loads reduction when viewed in this manner approaches 34 percent, which is
closer than the theoretically maximum benefit of 50 percent, discussed in

Reference 4.

Figures 3.7 and 3.8 show, as expected, that gimballing deoes not
reduce the edgewise bending moments, although the dynamic characteristics

of these moments are changed by the presence of teetering.

D-10
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k.o TECHNICAL PROBLEMS ENCOUNTERED IN
IMPLEMENTING THE GIMBAL MODEL

When the original system presented in Reference 2 was turned
on, it burst into full oscillation. Suspecting the high-gain loop closed
around ; and ¢, a Bode plot of the actual transfer function -¢/y, was
prepared and included herein as Figure 4.1. The extreme phase shifts in
the vicinity of 2hz, and at frequencies above 30 hz, reveal the sources of

instability.

Neglecting the phenomenon around 2hz for a moment, one sees
that a pure integrator feedback loop around the gimbal error function would
be stable, if the loop gain were 10 db at 35 hz, which translates to zero db
at 110.6 hz. The loop gain would then be atcut 4k db at .67 hz, the 1P
frequency. One could expect a reduction in the 1P gimbal error of about
1’165, or down to an error of about 1/2 percent. This might be considered

a maximum gimbal error reduction.

The phase lag and associated amrlitude roll-off around 35 hz
is because of the sample data process - the blade sweep calculations in
the WEST rotor simulation. This roll-off point could be moved to a higher
frequency by decreasing the sweep period from 10 ms to 1 ms in the WEST
rotor. This would enable a potential gain increase of 20 db in the gimbal
error loop, reducing the error to .05 percent, if this additional reduction

is deemed necessary at any future time.

Notwithstanding the loop gain limit because of rotor sweep
timing, the integrator feedback produces a 90 degree phase shift at all
frequencies, driving the mode around 2 hz unstable at all gains above O db.
With this phenomencn, the entire gimbal concept, as originally conceived,

is obviously invalid.

To understand the mechanism associated with this phase dip,

consider the simplified model of Figure 4.2. Depicted is one blade deflected

D-13
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in its first flap mode, with blade element mass dm, and associated differential

forces.

Hingevoint

M "L;

Mcment on
Hub Applied
By Blade

Figure 4.2 - Simple Blade Model

From inspection of Figure L.2, the moment applied to the hub by the blade

(blade number 1) is

. 5
My o= -Ir - J(By +0%8)
and, analogously, by blade number 2
= 17 - J(é + 2°B)
3 2 2

where the constant integrals are given by

4/; 32 ds
_/; s zl ds

(]
1]

np
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and the modal transformation is defined
z, B (5)

The blade modal equations are

2
Bl+ w Bl

-J7/Mg (6)

2
Ba* w8

1}

+5§/Mg (7)

where the generalized mass is defined

2
. ./;n zl ds (8)

The gimbal error is given by the expression

up>

M

e = M, - M (9)

The equations can be combined to yield the following transfer function

)

£
5 . (10)
<§) + 1
where
K & -1 - f/pz/mg> (11)
0 {.k/z/(x-f/mg) (12)

The Mod-0 has the following parametric values

2648

=
i

€
1}

11.43 —1.819 hz
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I = Uk, 000

J = -10,09%
P 2 uw/ = 2.728
Q = ’4-19
So
W - 4.8 hz
n

Function 10 has the characteristic depicted by Figure 4.1.
If aerodynamics had beern included in the simplified model, then damping terms
would be included in the transfer function. This more general function, with

the exact characteristics of Figure L.l, has the form:

]
w
e —
€
55 o
~——
.+
n
ve
o]
|
~——
+
'—l
(W

o o)

Figure L.3 is a block diagram of the system that produces the

(13)

characteristic of Figure L.l. Note that the presence of 0B = Bl - 62 in the
system is responsible for the dynamics. If AB = 0, the transfer function

would be a constant and easily controlled with pure integrator feedback.

Figure 4.3 suggests that the transfer function can be modified
by inserting Aé and’or AR energy into the calculation of €, phased to cancel
the loops shown in Figure 4.3. Figure 4.4 shows the qualitative effects of
doing this on the BODE plots. Note that both effects reduce the phase dip,

improving the system phase margin.
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Figure 4.3 - Basic Gimbal Error Transfer Function
Showing Influence of Blade Flapping Mode

The WEST rotor model has both AR and A8 signals available,
using notation er and er in the program. These signals were routed to the

GPURS gimbal implementation and inserted into the e calculation.

Both feedbacks enhanced the stability, but the Aé was found

to be superior. It did not reduce the gimbal error suppression, but did

stabilize the systemn.

As mentioned previously, a 1P gimbal error suppression of
over 1000 (over 60 db) was accomplished in the hardware, after the A8

stabilization loop was closed - this performance exceeds the Lo db maximum

reduction predicted from analysis of Figure L.1.

The final gimbal implementation diagrams are presented in

Appendix A.
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\
&-/ - DNominal System

- = — — With A8
o Compensation

Figure L.4ka) - AR Reduces Mumerator Resonance Frequency,
Improving Phase Margin

S ~———— Nominal System

_ With 28
Compensation

Figure 4.4b) - A8 Increases Numerator Damping Coefficient,

Flattening Second Part of Dipole and Improving
Phase Margin
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5.0 CONCLUSIONS AND RECOMMENDATIONS
The abbreviated gimbal subsystem of Reference 1 was implemented

using GPURS interfaced with WEST 2 and tested. After correcting the closed-loop
stability problems that emerged, the system was tested and verified as performing

well.

The next step would be to hardwire and test the full gimbal

subsystem model into the WEST 2 NRS. The system should have an activate/
inactivate control so that WEST 2 will then possess the ability to analyze

either teetering or hingeless wind turbine systems.

*The full system allows for shaft motion.
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APPENDIX E

ALGEBRAIC LOOP PROBLEM IN THE POWER TRAIN MODEL

This Appendix presents an example derivation of a single
degree-of-freedom power train mathematical model. A significant origin
of numerical instability is identified herein, and the reformulation
methods needed to correct the problem are discussed. These same
reformulation procedures are used elsewhere in this report in
derivations of more general power train mathematical models.



2.3 Power Trein/Power Sink Model

Figure 2-3 shows the single dof power train model, in

conjunction with an effective rotor inertia JR. Nﬁ is the rotor torque

produced by the WEST rotor model. Q and Q are rotor speed and acceleration

variables, which must be produced by the power train model and applied to

the rotor model as inputs. 7P is the torque applied to the power train

by friction and the power-absorbing elements (i.e., the alternator) of the

wind energy system. Note that the power train subsystem has the simple

equation

N = I - % (2-6)

Figure 2-3 - Power Train Single DOF Model




Figure 2-4 is a block diagram of the rotor/power train
system, showing the required Q and 0 feedbacks.
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Figure 2-4 - Generic Power Train Model
(1 DOF) With Rotor Caiplings




On inspection of Figure 2-4, one notes the "algebraic" loop
from Q through JR’ Nﬁ, l/JP and back to Q again. Such loops can produce
high fregquency instabilities in multiplexed systems such as the WEST rotor
model; rearranging the configuration into a form depicted by Figure 2-5
usually eliminates the problem, however, by effectively reducing the loop
gain from l/JP to l/(JP + JR). A high frequency low-pass filter with time
constant T has also been added, to remove high frequency energy from the
loop and further enhance stability. T is chosen to be small enough (e.g.,
2-10 ms), so that the filter's presence does not aberratz the accuracy

of the calculation in the freguency band of interest (usually below 10 Hz).

EXTERNAL COMMAND

_______________________ |

]

| ROTOR SYSTEM POWER

; ABSORBING -

: SUBSYSTEMS

; SUNDRY ‘
CONTROL ! TORQUE 7p i

PRODUCERS
1 el 1
J_+J s 0?
. P °R

Figure 2-5 - Alternative Power Train Implementation




The system of Figure 2-5 is shown in its detailed implementation
form in Section 4. The power absorbing equation has been implemented in
the form

7p = k@ +k, [(a-a)dt+ 7 1o (2-7)

The term with the kd factor is a damping term, which can also be used to
simulate alternators whose torques are related to speed. kP is a "phase"”
gain, which simulates alternators that produce torque in proportion to a
phase difference between the angle [Qdt and some network phase andt.

7 po? of course, is a steady bias torque associated with some nominal power
setting



APPENDIX F

VARIABLES AND CONSTANTS: DATA BASE REPRESENTATION

Presented 1in this Appendix are the definitions, including
normalization and scale factors, of all the variables and constants
used in the wind turbine simulation model.

Page

VARIABLES GO0 P00 LOOPCOL00C0COOINOENNOOEOOOOPOEOIOIOIEOEOSIOROIOEOIOTEOIEOIOOEEOEEOETES F-Z

Rotor ® 0000000000000 0000000000000 000600000000600OCORIROIOIOBROIOIOIOIOGIEEOIOES F-Z

Support (tOWer) 0000000 PRCOOIILOIOPRGEOOIOIOEOIOROIOOEEOPEOIEOEEOOEEOSTOIOIEOEOEN F_ll
ContrOI system 00 0000000000000 000 0000000 00C0CRRIEGOCCIOROIEOSEOIEOIESO F—ll
Power Train ® 0000 000000 CP0000BIPPNOSIOCECEOENPNOLEOEOIRNOEBOEOEBOEONOOEOOSIEOTOETES F_lz

Air MaSS ® 00000 PCEOPONEPSPOD0G0000000000SROGOOIEECOIOEOIOCEOROOSTOITSEO F_lz

CONSTANTS 9 00000000000 0000000 CCI0000P00COCEIONRRIOIIEOGEOREOINOEEOREOIEOTEOIROETONRTIOIDRPEOESN F‘14

ROELOT ceeeeeveveccsccccocsscsssosncssssscsccssnccscescsssases F—15
SUPPOTt (LOWET) teeecessvecccscssoccccccsossscscscncsasasaes F=10
CONLYOl SYSLEM ceeessseesscovessssssscensssesvssescsscsssas F-19
Power Train eeeecccescsescoccsscsecscscsssscssscsssssssssssse F=20

Air MaSS S0 8002000000020 0 00000000V 00000 CISOIIIEGEIOOIIOILOSIIOSIEOEOIOTIES F—ZO




OO0 O0000n

VARIABLES APPEARING IN THE SYSTEM EQUATIONS
JUNE 1985
1, THE SIMULATION MODEL IS SET UP FOR THE FOLLOWING MAXIMUMS:

BLADES cecoeceocsccsccossccsacsasccncsecss(NB)
RADIAL STATIONS PER BLADE ceesecccscesses(NR) 1
CONTROL SYSTEM STATE VECTOR ELEMENTS ....(NC)
ELASTIC MODES PER BLADE cevecccccsosceess(NM)
GIMBAL DEGREES OF FREEDOM ceecsescecoesces(NG)
POWER TRAIN DEGREES OF FREEDOM ceeeeseess(NP)

= WWwwN

2. THE FOLLOWING CONSTANTS ARE USED FOR NORMALIZATION AND SCALING:

C34 BLADE CHORD AT 3/4 RADIUS (FEET)

FR REFERENCE FORCE (LBS)

MR REFERENCE MOMENT = R*FR (FT-LBS)

NB NUMBER OF BLADES

OR REFERENCE ROTATIONAL VELOCITY = Z0

R ROTOR RADIUS (FEET)

RAR REFERENCE ROTATIONAL ACCELERATION = Z0**2

VR REFERENCE TRANSLATIONAL VELOCITY = R*Z0

XAR REFERENCE TRANSLATIONAL ACCELERATION = R*Z0**2
Z0 NOMINAL ROTOR SPIN RATE (RAD/SEC)

ROTOR MODEL : 1.1 THROUGH 1.17

BOO(1)+2 : 1.,5.,5. : 1/R+2
QUIESCENT BLADE SHAPE FUNCTION S:B,B:S,R:S

B(1)+2 : 1.,5.,5. ¢ 1./R+2
POSITION OF BAX WRT SAX. S:B,B:S,R:S.

BD(1)+2 : 5.,2.5,2.5 : 1./VR+2
VELOCITY OF BAX WRT SAX. S:B,B:S,R:S

BDD(1)+2 : 10.+2 : 1./XAR+2
ACCELERATION OF BAX WRT SAX. S:B,B:S,R:S

BF(1)+2 : 5.42 : 1./R+2
TRANSLATIONAL PERTURBATION OF BRL DUE TO FEATHERING T:XP,S:B,B:S,R:S.

BP(1)+2 : 10.,5.,5. : 1./R+2
PERTURBATION OF BRL FROM QUIESCENT POSITION, BP=B-BOO.

CAB : 1. : 1.
COSINE OF BLADE SECTION ANGLE OF ATTACK (WRT CHORDLINE)

CB : .5 : 1./C34
LOCAL BLADE CHORD,FT.
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CFA2 : .5 : 1.
BLADE SECTION DRAG COEFFICIENT.(USED IN AERO PACKAGE)

CFA3 : .5 : 1.
BLADE SECTION LIFT COEFFICIENT.(USED IN AERO PACKAGE)

CFS : 1. ¢ 1.
COS(FS); FS = BLADE FEATHERING ANGLE.

CMA : 10. : 1,
BLADE SECTION MOMENT COEFFICIENT.(USED IN AERO PACKAGE)

CY : 1. : 1.
C0S(Y); Y = BLADE # 1 AZIMUTHAL ANGLE.

CYBI : 1. : 1.
COS(YBI); YBI = ANGLE BETWEEN BLADE # 1 AND BLADE # I.

CYBION : 1., : 1.
CYBI/NB

CYT : 1. ¢ 1,
COS(Y+YBI); (Y+YBI) = BLADE # I AZIMUTHAL ANGLE.

DA(1)1+2,DA(1)2+2,DA(1)3+2 : 1.+48 : 1.+8
ROTATIONAL MODESHAPE MATRIX - REPEATS FOR EVERY RADIAL POSITION, J.

DB(1)1+2,DB(1)2+2,DB(1)3+2 : 5.,2.5+1,5.,2.5+1,5.,2.5+] : 1./R+8
TRANSLATIONAL MODESHAPE MATRIX - REPEATS FOR EVERY RADIAL POSITION, J.

DRAG : .25 : NB*R/FR
AERODYNAMIC DRAG MAGNITUDE.

DS : 10, : 1./R
BLADE SEGMENT LENGTHS USED IN RADIAIL SUMMATIONS

EA(L)+2 : 2.42 : 1.42
ROTATIONAL BRL MOVEMENT DUE TO BLADE MODES - EULER ANGLES

EB(1)+2 : 10.,5.,5. : 1./R+2
TRANSLATIONAL BRL MOVEMENT DUE TO BLADE MODES.

EDA(1)+2 : 1.42 : 1./0R+2
TIME DERIVATIVE OF EA

EDB(1)+2 : 5.,2.5,2.5 : 1./VR+2
TIME DERIVATIVE OF EB.

EDDA(1)+2 : .2+2 : 1./RAR+2
TIME DERIVATIVE OF EDA

EDDB(1)+2 : 1.,.5,.5 : 1./XAR+2
DOUBLE TIME DERIVATIVE OF EB.

EGl : .25 : 1./MR




GIMBAL ERROR FUNCTION

F: .5:1.
BLADE FEATHERING CONTROL ANGLE, RAD.

FAO(1)+2 : .5,.25,.1 : NB*R/FR+2
QUIESCENT DISTRIBUTED AERO LOADING FORCE, LB/FT. R:S.

FABC(2)+l : .5,.2 : NB*R/FR+l
AERO DISTRIBUTED FORCE COLUMN, R:BAX.

FBLD(1)+2 : 1l.,1.,.1 : NB/FR+2
BLADE # 1 ROOT FORCES, RESOLVED IN SHANK AXES

FG(1)+2 : l.,1.,.1 : 1./FR+2
FORCES APPLIED BY ALL BLADES TO GIMBAL RING. R:G.

FGR(1)+2 : 1.,1.,.1 : 1./FR+2
FORCES SUMMED FOR ALL BLADES, RESOLVED TO GAX.

FH(1)+2 : l.,1.,.2 : 1./FR+2
FORCES APPLIED TO SUPPORTS BY ROTOR, RESOLVED TO HAX.

FMA(1)+2 : .5,.25,.1 : NB*R/FR+2
MODIFIED DISTRIBUTED AERO FORCE COLUMN

FMB(1)+2 : .5,.25,.1 : NB*R/FR+2
FMA+FMI,

FMI(1)+2 : .5,.25,.1 : NB*R/FR+2
MODIFIED DISTRIBUTED INERTIAL FORCE COLUMN

FP(1)1+2,FP(1)2+2,FP(1)3+2 : 242, .442,1.,1.,.5 ¢ 1.+8
SHANK FORCE INTEGRAND PREMULTIPLIER TENSOR

FRI(1)+2 : l.,1.,.1 : NB/FR+2
BLADE ROOT FORCES APPLIED TO GIMBAL RING FOR BLADE NO. I. R:S.

FS : .5 ¢ 1.
F-FO (FEATHERING ANGLE)

FSO1,FS02,FS03 : .1,l.,.1 : 1./FR+2
BLADE ROOT FORCES IN SHANK FORCE FORMULA (QUIESCENT STATE).

FSQL(1)+2,FSQ2(1)+2,FSQ3(1)+2 : .5+2,.5,.125+1,.05+2 : 1./FR+8
OPERATOR IN SHANK FORCE FORMULA.

FSQDL(1)+2,FSQD2(1)+2,FSQD3(1)+2 : 1.+2,1.+2,.142 : OR/FR+8
OPERATOR IN SHANK FORCE FORMULA.

GI(1)+2 : .25+2 : 1./RAR+2
GENERALIZED FORCING FUNCTION COLUMN FOR Ith BLADE.

GP(1)1+2,GP(1)2+2,GP(1)3+2 : .05+2,.1+2,.25+2 : FR/NB*RAR+8
GENERALIZED FORCING FUNCTION INTEGRAND PREMULTIPLIER TENSOR.
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GP(1)4+2 : 1.,1.,.8 : FR/NB*RAR+l,FR*C34/NB*R*RAR
GENERALIZED FORCING FUNCTION INTEGRAND PREMULTIPLIER TENSOR.

GRI(1)+2 : ,254+2 : 1./RAR+2
GENERALIZED FORCING FUNCTION OVER GENERALIZED MASS-ROTOR BLADE MODES.

IFR(1)+2 : .1,.1,.1 : NB*R/FR+2
INTEGRAND FUNCTIONS-BLADE ROOT(GIMBAL RING) LOADS. R : R.

IGR(1)+2 : ,025+2 : R/RAR+2
INTEGRANDS - BLADE GENERALIZED FORCING FUNCTION RADIAL INTEGRATION.

IMR(1)+2 : .1,.25,.25 : NB/FR+2
INTEGRAND FUNCTIONS-BLADE ROOT(GIMBAL RING) LOADS. R:R.

IX(1)+2 ¢ 4.,8.+1 : 1.42
INTEGRAND FOR X FUNCTION.,

IXD(1)+2 : 2.,1.,1. : 1./2042
INTEGRAND FOR XD FUNCTION

IXDD(1)+2 ¢ .5,1.,1. ¢ l./RAR+2
INTEGRAND FOR XDD FUNCTION.

LIFT : .1 : NB*R/FR
AERODYNAMIC LIFT MAGNITUDE.

M2, : 1.
BLADE SECTION MACH NUMBER (USED IN AERO PACKAGE).

M(1)+2 : 5.,2.,5. : l.+2
MACH NUMBER COMPONENTS RESOLVED TO BAX.

MB : .025 : NB*VR*VR/FR
DISTRIBUTED BLADE MASS, SLUGS/FT.

MBLD(1)+2 : .25,.25,1. : NB/MR+2
BLADE # 1 ROOT MOMENTS, RESOLVED IN SHANK AXES

MG(1)+2 : .25,.25,1. : 1./MR+2
MOMENTS APPLIED BY ALL BLADES TO GIMBAL RING. R:G.

MGR(1)+2 : .25,.25,1. : 1./MR+2
MOMENTS SUMMED FOR ALL BLADES, RESOLVED TO GAX.

MH(1)+2 : .25,.25,1, : 1./MR+2
MOMENTS APPLIED TO SUPPORTS BY ROTOR, RESOLVED TO HAX.

MP(1)1+2,MP(1)2+2,MP(1)3+2 : .2,.5,.5,.4,1.41,1.,1.25,2.5 : 1./R+8
SHANK MOMENT INTEGRAND PREMULTIPLIER TENSOR.

MRI(1)+2 : .25,.25,1. : NB/MR+2
BLADE ROOT MOMENTS APPLIED TO GIMBAL RING FOR BLADE NO. I. R:S.



MSO1,MS02,MS03 : .25,.25,1. : l./MR+2
BLADE ROOT MOMENTS IN SHANK MOMENT FORMULA (QUIESCENT STATE).

MSQ : 1. : 1.
MACH NUMBER, M, SQUARED (USED IN AERO PACKAGE).

MSQL(1)+2,MSQ2(1)+2,MSQ3(1)+2 : .125+2,,125+2,.5,.25+1 : 1./MR+8

OPERATOR IN SHANK FORCE FORMULA

MSQD1(1)+2,MSQD2(1)+2,MSQD3(1)+2 : .25+2,.25+2,1.42 : OR/MR+8
OPERATOR IN SHANK FORCE FORMULA

QO(1)+2 : 2,42 : 1.+2
STEADY COMPONENT OF MULTIBLADE MODAL COORDINATES

QAC : .0625 : NB*R/FR
AERODYNAMIC PRESSURE TIMES LOCAL BLADE CHORD.

QC(1)+2 : 2.42 : 1.+2
COSINE COMPONENT OF MULTIBLADE MODAL COORDINATES

QDO(1)+2 ¢ 1.4+2 : 1./0R+2
STEADY COMPONENT OF MULTIBLADE MODAL VELOCITY

QDC(1)+2 : 1.+2 : 1./0R+2
COSINE COMPONENT OF MULTIBLADE MODAL VELOCITY

QDDG!l : 5. : 1./RAR
DOUBLE TIME DERIVATIVE OF GIMBAL DEFLECTION ANGLE.

QDDI(1)+2 : .2+2 : 1./RAR+2
DOUBLE TIME DERIVATIVE OF BLADE I MODAL COORDINATES.

QDGL : 5. : 1./0R
TIME DERIVATIVE OF GIMBAL DEFLECTION ANGLE.

QDI(1)+2 : 1.+2 : 1./OR+2
TIME DERIVATIVES OF BLADE I MODAL COORDINATES.

QDS(1)+2 : 1.+2 : 1./0R+2
SINE COMPONENT OF MULTIBLADE MODAL VELOCITY

QGl : 5, : 1.
GIMBAL DEFLECTION ANGLE

QI(1)+2 ¢ 2.42 : 1.+2
BLADE MODAL COORDINATES FOR BLADE NO. I.

QS(1)+2 : 2.+2 : 1./NB+2
SINE COMPONENT OF MULTIBLADE MODAL COORDINATES

QSGl : 5. : 1.
SAVE GIMBAL ANGLE

RO(1)1+2,R0(1)2+2,R0(1)3+2 : 1.,2.41,2.,.5,1., 2.,1.,.5 : 1.48




ROTATION MATRIX - SAX TO BAX CONTROL POSITION.

ROO(1)1+2,R00(1)2+2,R00(1)3+2 : le,2.42,1.41,2.,1.+1 : 1.48
ROTATION MATRIX, SAX TO BAX - BLADE IN QUIESCENT POSITION.

R(1)1+2,R(1)2+2,R(1)3+2 : 1.,2.+1,2.,.5,1., 2.,1.,.5 : 1.48
SHANK TO BLADE AXES EULERIAN X - FORMATION MATRIX, PACKED BY COLUMN.

RFS : 1. : 1,
OPERATOR ON F-FO TO PRODUCE NO. 1 SAX TO BAX ROTATION, CONTROL POSITION

RRI(2)+1 : 2,41 : 1l.+1
ROTATION MATRIX ELEMENTS - RELATIVE WIND TO BAX

RR2(2)+1 : 1.,2.5 : l.+1
ROTATION MATRIX ELEMENTS - RELATIVE WIND TO BAX

RR3(2)+1 : 1.4+l : 1.+l
ROTATION MATRIX ELEMENTS - RELATIVE WIND TO BAX

S :1., : 1./R
LINE COORDINATE OF BLADE RADIAL STATION ALONG BRL

SAB : 1. : 1,
SINE OF BLADE SECTION ANGLE OF ATTACK (WRT CHORDLINE)

SFS : 1. : 1.
SIN(FS); FS = BLADE FEATHERING ANGLE.

SY : 1, : 1.
SIN(Y); Y = BLADE # 1 AZIMUTHAL ANGLE,

SYBI : 1. : 1.
SIN(YBI); YBI = ANGLE BETWEEN BLADE # 1 AND BLADE # I.

SYBION : 1. : 1.
SYBI/NB.

SYI : 1. : 1,
SIN(Y+YBI); (Y+YBI) = BLADE # I AZIMUTHAL ANGLE.

UMBR(1)+2 : 10.,10.,2.5 : 1./XAR+2
BLADE ELEMENT MODIFIED ACCELERATION, R : SAX.

US(1)+2 : 10.4+2 : 1./XAR+2
ACCELERATION OF SHANK AXES., T:XA,S:S,B:I,R:S

VA(L)+2 : 2.5,.5,2.5 : 1./VR+2
AERO VELOCITY OF BLADE AXES. S:B,B:A,R:B

VAA(L)+2 : 2.5,.5,2.5 : 1./VR+2
AUGMENTIVE AERO VELOCITY DUE TO INTERFERENCE EFFECTS

VAC(1)+2 : 2,5+2 : 1./VR+2
INTERMEDIATE VARIABLE



VACT(1)42 : 2.5,2.5,2.5 : 1./VR+2
AERO VELOCITY SEEN BY THE BLADE (INCLUDING INTERFERENCE EFFECTS)

VAH(1)+2 : 2.5+2 : 1./VR+2
AIRSPEED OF HAX, S:H,B:A,R:H

VAS(1)+2 : 2.5+2 : 1./VR+2
SHANK AERODYNAMIC VELOCITY OF BLADE I. S:S,B:A,R:S.

VATU(1)+2 : 2.,5+2 : 1./VR+2
INTERMEDIATE VARIABLE

VC(1)+2 : 20.42 : 1,/VR+2
INTERMEDIATE VARIABLE

VDC(1)+2 : 10.+2 : 1./XAR+2
INTERMEDIATE VARIABLE

VDH(1)+2 : 10.+2, : 1./XAR+2
TIME DERIVATIVE OF VH TAKEN WRT HAX, S:H,B:I,R:H.

VDS(1)+2 : 10.+1,20. : 1./XAR+2
TIME DERIVATIVE OF SHANK INERTIAL VELOCITY WRT SAX. S:S,B:I,R:S,D:S

VDTU(1)+2 : 10.+2 : 1./XARH2
INTERMEDIATE VARIABLE

VH(1)+2 : 20.+2 : 1./VR+2
INERTIAL VELOCITY OF HAX, S:H,B:I,R:H

VS(1)+2 : 20.42 : 1./VR+2
INERTIAL VELOCITY OF BLADE SHANK AXES. S:S,B:I,R:S.

VTU(1)+2 : 20.+2 : 1./VR+2
INTERMEDIATE VARIABLE

VWT(1)+2 : 2.5+2 : 1./VR+2
WIND VELOCITIES INCLUDING TURBULENCE AND RETARDATION.

WAC(1)+2 : 2.5+1,.5 : 1./OR+2
INTERMEDIATE VARIABLE

WAH(1)+2 : 2.5+2 : 1./OR+2
AIRSPEED OF HAX, S:H,B:A,R:H

WAS(1)+2 : 2,5+2,.5 : 1./0R+2
SHANK AERODYNAMIC VELOCITY OF BLADE I. S:S,B:A,R:S.

WATU(1)+2 : 2.5+1,.5 : 1./OR+2
INTERMEDIATE VARIABLE

WCMZ(1)+2 : 5.,5.,10. : 1./OR+2
INTERMEDIATE VARIABLE, ( WC-Z )




WDC(1)+2 : 2.5+1,5. : 1./RAR+2
INTERMEDIATE VARIABLE

WDH(1)+2 : 2.5,2.5,5. : 1./RAR+2
TIME DERIVATIVE OF WH TAKEN WRT HAX, S:H,B:I,R:H.

WDS(1)+2 : 2.5+1,5. : 1./RAR+2
TIME DERIVATIVE OF SHANK INERTIAL VELOCITY WRT SAX. S$:S,B:I,R:S,D:S

WDSI(1)+2 : 2.5+2 : 1./RAR+2
TIME DERIVATIVE WSI TAKEN WRT SAX. S:S,B:I,R:S,D:S

WDTU(1)+2 : 2.5+1,5. : 1./RAR+2
INTERMEDIATE VARIABLE

WH(1)+2 : 5.,5.,10. : 1./0R+2
INERTIAL VELOCITY OF HAX, S:H,B:I,R:H

WS(1)+2 : 5.,5¢,.5 ¢ 1./0R+2
INERTIAL VELOCITY OF BLADE SHANK AXES. S:S,B:I,R:S.

WSMZ(1)42 : S.+1,10. : 1./0R+2
WS MINUS Z, WS WITH Z REMOVED TO IMPROVE SCALING

WTUMZ(1)+2 : 5.,5.,10 : 1./OR+2
INTERMEDIATE VARIABLE, ( WTU-Z )

WWT(1)+2 ¢ 2.5+2 : 1./0R+2
WIND VELOCITIES INCLUDING TURBULENCE AND RETARDATION.

X(1)42 : 40.42 : 1./R+2
PERTURBATION OF BRL FROM POSITION CALCULATED USING LINEAR MODEL.

XD(1)+2 : 20,42 : 1./VR+2
PERTURBATION OF BRL SPEED FROM THAT COMPUTED USING LINEAR MODEL.

XDD(1)+2 : 10.+2 : 1./XAR+2
PERTURBATION OF BRL ACCELERATION FROM THAT COMPUTED USING LINEAR MODEL.

Z:.5: 1.,/0R
ROTOR SPIN RATE-RAD/SEC

ZD : S. : 1./RAR
ROTOR SPIN ACCELERATION-TIME DERIVATIVE OF Z.

Zr : 1. : 1.
(z/20 - 1.), PERTURBATION OF Z FROM THE REFERENCE VALUE, Z0.

ZSQ : .25 : 1./RAR
Z SQUARED.

Z2Z : .5 : 1,
(Z/20)**2 - 1 , QUADRATIC DIFFERENTIAL SPIN RATE.



C TOWER SHADOW AND WIND SHEAR

c
C FOR CONVENIENCE, THESE EFFECTS HAVE BEEN INCLUDED IN THE ROTOR MODEL.

C NORMALLY THEY ARE PART OF THE "AIR MASS" SUBSYSTEM.

C

SHD : 1. : 1.
SHADOW EFFECT~MODULATING COEFFICIENT.

SHR : 1. : 1.
WINDSHEAR MODULATING COEFFICIENT
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c

C SUPPORT SYSTEM : 2.0

c

c

GS(1)+1 : .5+2 : 1./RAR+2
GENERALIZED FORCING FUNCTION ON SUPPORT SYSTEM MODES

MPOD : 1. : l./MR
MOMENT ABOUT THE 3-AXIS TRANSMITTED FROM THE POD TO THE TOWER

s(1)+2 : 10,,10.,20. : 1.42
SUPPORT SYSTEM MODAL COORDINATES

SD(1)+2 : 1.,1.,2. : 1./OR+2
TIME DERIVATIVE OF SUPPORT SYSTEM MODAL COORDINATES.

SDD(1)+l : .5,.5,.5 : 1./RAR+2
SECOND TIME DERIVATIVE OF SUPPORT SYSTEM MODAL COORDINATES.

VBH(1)4+2 : 20.+2, : 1./VR+2
INERTIAL VELOCITY OF TOWER BASE, S:BT,B:I,R:H.

VDBH(1)+2 : 10.+2 : 1l./XAR+2
TIME DERIV. OF INERTIAL VELOC. TAKEN WITH RESPECT TO TOWER BASE AXES.

WBH(1)+2 : 5.,5.,10. : 1./0R+2
INERTIAL VELOCITY OF TOWER BASE, S:BT,B:I,R:H.

WDBH(1)+2 : 2.5+1,5. : 1./RAR+2
TIME DERIV. OF INERTIAL VELOC. TAKEN WITH RESPECT TO TOWER BASE AXES.

C CONTROL SYSTEM : 3.0

c

ACL)+2 & 2.,.5,5. ¢ 1.+2
CONTROL SYSTEM STATE VECTOR.

AD(1)+2 : 2.,.02,.5 : 1./OR+2
TIME DERIVATIVE OF A.

C(1)+2 : .5,5.+1 : 1.+2
ROTOR CONTROLS, COLLECTIVE PITCH, Al AND Bl CYCLIC PITCH(RADIANS).

LGC : 1. : 1./MR
ELECTRICAL GENERATOR/ALTERNATOR CONTROL.

ZA : ,5 : 1./0R
ALTERNATOR/GENERATOR ROTOR ROTATIONAL SPEED.

ZERR : 2. : 1./0R
ERROR IN THE RATIOS OF ROTOR SPEED: (ZREQ/Z0 - Z/Z0)
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c

C POWER TRAIN : 4.0

c

C

CDY : .5 : 1.
ONE HALF OF COSINE OF ROTOR ADVANCE ANGLE, COS(DY)

CYHAF : .5 : 1.
ONE HALF OF COSINE OF THE ROTOR AZIMUTHAL ANGLE CY.

CYSAV : .5 : 1.
HOLDS A "SAVE" VERSION OF CYHAF.

EA : .25 : 1.
AMPLITUDE ERROR IN RATE RESOLVER - POWER TRAIN MODEL.

P1,P2 : 1.,25. : l.+1
POWER TRAIN COORDINATE VECTOR

PD1,PD2 : .5,5. : l./OR+l
TIME DERIVATIVE OF POWER TRAIN COORDINATES,P.

PDD1,PDD2 : 5.,.5 : l./RAR+1
DOUBLE TIME DERIVATIVE OF POWER TRAIN COORDINATES,P.

SpY : 1. : 1.
SINE OF ROTOR ADVANCE ANGLE, SIN(DY).

SYHAF : .5 : 1.
ONE HALF OF SINE OF THE ROTOR AZIMUTHAL ANGLE SY.

C AIR MASS : 5.0

C

EVR : .04 : 1.
ERROR FUNCTION ON VELOCITY RECIPROCAL IN AIR MASS MODELS.

QGU(1)+5 : 256.+5 : l.+5
WIND GUST FILTER COLUMN OF STATISTICAL DEGREES OF FREEDOM.

QDGU(L)+5 : 16445 : 1./0R+5
TIME DERIVATIVE OF QG (WINDGUST STATISTICS).

QDDGU(1)+5 : 1.+5 : 1./RAR+5
DOUBLE TIME DERIVATIVE OF QG(WINDGUST STATISTICS).

QDGUO(1)+5 : 16.+5 : 1./OR+5
OLD GUST VELOCITY USED IN NUMERICAL INTEGRATION.

RANDOM : 1. : 1.
RANDOM VARIABLE (RANDOM NUMBER) IN WINDGUST MODEL.

RV : .04 : VR
VELOCITY RECIPROCAL IN AIR MASS RETARDATION MODEL.

VG(1)+2 : 2,542 : 1./VR+2
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WINDGUST VELOCITIES.

VRW : 2.5 : 1./VR
WIND RETARDATION VELOCITY-AIR MASS MODELS.

VW(1)+2,WW(1)+2 ¢ 2.5+5 : 1./VR+2,1./0R+2
WIND INERTIAL VELOCITY. S:W,B:I,R:0

WG(1)+2 : 2.5+2 : 1./0R+2
WINDGUST VELOCITIES.

WW(1)+2 : 2,5+2 : 1./0R+2
WIND INERTIAL VELOCITY. S:W,B:I,R:0

TOWER SHADOW AND WIND SHEAR
FOR CONVENIENCE, THESE EFFECTS HAVE BEEN INCLUDED IN THE ROTOR MODEL.

EXPANDED VERSION OF VARIABLES FOR EACH BLADE.
THE 2 BLADES ARE DESIGNATED "A" AND "B"

Ao 0

QI(1)A+2 ¢ 2.42 ¢ 1.42

QI(1)B+2 : 2.42 : 1.+2

QDI(1)A+2 : 1.42 : 1./0R+2

QDI(1)B+2 : 1.+2 : 1./0R+2

QDDI(1)A+2 : .2+2 : 1./RAR+2

QDDI(1)B+2 : .2+2 : 1./RAR+2
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o000 OO0OO00OOO0O00000

CONSTANTS APPEARING IN THE SYSTEM EQUATIONS

JUNE 1985

1. THE SIMULATION MODEL IS SET UP FOR THE FOLLOWING MAXIMUMS:

BLADES +secececcscsccccsccscsssasasansanse(NB)
RADIAL STATIONS PER BLADE ccecsecescsseces(NR) 1
CONTROL SYSTEM STATE VECTOR ELEMENTS ....(NC)
ELASTIC MODES PER BLADE «ceceeccescacecess(NM)
GIMBAL DEGREES OF FREEDOM ceecccccccsscss(NG)
POWER TRAIN DEGREES OF FREEDOM .ececseees(NP)

N =W W N

2., THE EXISTING PREPROCESSOR PROGRAMS REQUIRE THAT ALL CONSTANTS USED
FOR SCALING AND NORMALIZATION BE DEFINED IN THIS FILE, IRRESPCTIVE
OF WHETHER THEY APPEAR EXPLICITLY IN THE SYSTEM EQUATIONS OR NOT.

3. EVERY CONSTANT LISTED IN THIS FILE MUST APPEAR IN THE DSS2 OUTPUT
FILES "DSS2.SNG" OR '"DSS2.TBL".

4., SINCE THE PREPROCESSOR PROGRAMS LIMIT THE RANGE OF ALL CONSTANTS
TO +/- 1, THE CONSTANTS "NB" AND "NR" WHICH ARE USED AS PROGRAM
LOOPING PARAMETERS, ARE EXPLICITLY DEFINED IN THE SYSTEM EQUATIONS.

CONSTANTS USED FOR NORMALIZATION AND SCALING

C34 1. = 1.
BLADE CHORD AT 3/4 RADIUS POINT (FEET).

FR : 1. : 1.
REFERENCE FORCE USED FOR NORMALIZATION.

MR : 1. : 1.
REFERENCE MOMENT = R*FR

NB : 1. : 1.
NUMBER OF BLADES IN THE ROTOR

OR ¢ 1, : 1.
REFERENCE ROTATIONAL VELOCITY = ZO (RAD/SEC)

R:1. : 1.
ROTOR RADIUS (FEET)

RAR : 1. : 1.
REFERENCE ROTATIONAL ACCELERATION = Z0**2

VR : 1. ¢ 1.
REFERENCE TRANSLATIONAL VELOCITY = R*Z0 (FT/SEC)

XAR : l. : 1.
REFERENCE TRANSLATIONAL ACCELERATION = R*ZQ**2
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c

Z0 : 1. ¢ 1.
NOMINAL ROTOR SPIN RATE (RAD/SEC)

C ROTOR MODEL : 1.1 THROUGH 1.17

c

CYB : 1. ¢ 1.
COSINE (YB); YB = 2*PI/NB

CYC : 1. : 1.
COSINE (YC); YC = ANGLE TO ROTATE ROTOR AXES TO TEETER AXES

CYR2 : 1. : 1.
COSINE (YR2); YR2 = ROTOR SHAFT ANGLE WITH RESPECT TO VERTICAL

DT : 1. : OR
NUMERICAI, INTEGRATION ON TIME-STEP SIZE, SECONDS.

DTQ : 5. : OR
TIME-STEP SIZE, USED IN CORRECTING MODAL QUANTITIES.

ESQQ11,ESQQ22,ESQQ33 : .1,.05,.01 : 1./RAR+2
ELEMENTS IN MATRIX OF MODAL FREQUENCIES (RAD/SEC)#**2

FO : .5 : 1.
BLADE QUIESCENT FEATHERING CONTROL ANGLE.

FO1,F02,F03 : .1,1.,.1 : 1./FR+2
AERODYNAMIC & INERTIAL FORCES IN THE QUIESCENT STATE

FQLl(1)+2,FQ2(1)+2,FQ3(1)+2 : .5+2,.5,.125+1,.05+2 : 1./FR+8
OPERATOR IN SHANK FORCE FORMULA.

FQD1(1)+2,FQD2(1)+2,FQD3(1)+2 : 1.+2,1.+2,.142 : OR/FR+8
OPERATOR IN SHANK FORCE FORMULA.

FZ1,FZ2,FZ3 : .1,2.,.2 : 1./FRH2
AERODYNAMIC FORCES - ROTOR SPEED VARIATIONS

FZQ1(1)+2,FZQ2(1)+2,FZQ3(1)+2 : 1.42,1.,.25+1,.142 : 1./FR+8
OPERATOR IN SHANK FORCE FORMULA.

FZQD1(1)+2,FZQD2(1)+2,FZQD3(1)+2 : 1.+2,1.+2,.142 : OR/FR+8
OPERATOR IN SHANK FORCE FORMULA

GBO(1)+2 : .54+2 : 1./RAR+2
CONSTANT COLUMN IN GENERALIZED FORCING FUNCTION FORMULA.

GQA,GQZA : l.+1 : RAR/1.+1
CONSTANT IN GIMBAL SERVO INTEGRATION FORMULA

GQQ,GQV,GQzZV : 1.+2 : 1.,0R/1.+1
CONSTANT IN GIMBAL SERVO INTEGRATION FORMULA
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GV(1)1+2,GV(1)2+2,GV(1)3+2 : .25+8 : 1./OR+8
CONSTANT OPERATOR IN GENERALIZED FORCING FUNCTION FORMULA

GVA,GVZA : l.+1 : OR/1.+l
CONSTANT IN GIMBAL SERVO INTEGRATION FORMULA

GVV,GVQ,GVZQ : 1.+2 : l.,1./0R+l
CONSTANT IN GIMBAL SERVO INTEGRATION FORMULA

GZQ(1)1+2,G62Q(1)2+2,62Q(1)3+2 : .25+8 : 1./RAR+8
CONSTANT OPERATOR IN GENERALIZED FORCING FUNCTION FORMULA

GzV(1)142,62zv(1)2+2,GZVv(1)3+2 : .25+8 : 1./OR+8
CONSTANT OPERATOR IN GENERALIZED FORCING FUNCTION FORMULA

KGE : 20. : MR/RAR
CONSTANT IN GIMBAL SERVO INTEGRATION FORMULA

KGQC : l. : NB/RAR
CONSTANT IN GIMBAL SERVO INTEGRATION FORMULA

KGQS : l. : NB/RAR
CONSTANT IN GIMBAL SERVO INTEGRATION FORMULA

KGVC : 1, : NB/OR
CONSTANT IN GIMBAL SERVO INTEGRATION FORMULA

KGVS : 1. : NB/OR
CONSTANT IN GIMBAL SERVO INTEGRATION FORMULA

KQG11,KQG22,KQG33 : 8.+2 : RAR+2
CONSTANT IN BLADE NORMAL COORDINATE INTEGRATION ALGORITHM

KQQl1,KQQ22,KQQ33 : 1.4+2 : 1.+2

CONSTANTS IN BLADE NORMAL COORDINATE INTEGRATION ALGORITHM

KQV11,KQV22,KQV33 : 2.42 : OR+2
CONSTANT IN BLADE NORMAL COORDINATE INTEGRATION ALGORITHM

KQZG11,KQZG22 ,KQZG33 : 8.42 : RAR+2
CONSTANT IN BLADE NORMAL COORDINATE INTEGRATION ALGORITHM

KQZQ11,KQZQ22,KQZQ33 : 1.+2 : 1.+2
CONSTANT IN BLADE NORMAL COORDINATE INTEGRATION ALGORITHM

KQZV11,KQZV22,KQZV33 : 2.4+2 : OR+2
CONSTANT IN BLADE NORMAL COORDINATE INTEGRATION ALGORITHM

KVG11,KVG22 ,KVG33 : 4.4+2 : OR+2
CONSTANT IN BLADE NORMAL COORDINATE INTEGRATION ALGORITHM

KVQ1l1,KVQ22,KVQ33 : .5+2 : 1./0R+2
CONSTANT IN BLADE NORMAL COORDINATE INTEGRATION ALGORITHM

KVV11,KVV22 ,KVV33 : 1.4+2 : 1.+2
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C

CONSTANTS IN NORMAL COORDINATE INTEGRATION ALGORITHM

KVZG11,KVZ2G22,KVZG33 : 4.+2 : OR+2
CONSTANT IN BLADE NORMAL COORDINATE INTEGRATION ALGORITHM

KVZQll,KVZQ22,KVZQ33 : .5+2 : 1./OR+2
CONSTANT IN BLADE NORMAL COORDINATE INTEGRATION ALGORITHM

KVZV11,KVZV22,KVZV33 : 1.42 : 142
CONSTANT IN BLADE NORMAL COORDINATE INTEGRATION ALGORITHM

MO1,M02,M03 : .25,.25,1. : 1./MR+2
AERODYNAMIC MOMENTS IN THE QUIESCENT STATE

MQ1(1)+2,MQ2(1)+2,MQ3(1)+2 : ,12542,.1254+2,.5,.25+] : 1./MR+8
OPERATOR IN SHANK FORCE FORMULA

MQD1(1)+2,MQD2(1)+2,MQD3(1)+2 : .25+2,.25+2,1.42 : OR/MR+8
OPERATOR IN SHANK FORCE FORMULA

MZ1,M22,M23 : .5,.5,2. : 1./MR+2
AERODYNAMIC MOMENTS -~ ROTOR SPEED VARIATIONS

MZQ1(1)+2,M2Q2(1)+2,MZQ3(1)+2 : 025+2,.25+2,1.,.5+1 : 1./MR+8
OPERATOR IN SHANK FORCE FORMULA

MZQD1(1)+2,M2QD2(1)+2,MZQD3(1)+2 : .25+2,.25+2,1.42 : OR/MR+8
OPERATOR IN SHANK FORCE FORMULA

PR : 1. ¢ 1,
AIR PRESSURE RATIO, P/PO; (ACTUAL/STANDARD SEA LEVEL)

QFACT : .0l : NB*R*C34/FR
FACTOR; AERODYNAMIC PRESSURE = 1481

RNB : 1., ¢ 1.
THE RATIO 1./NB

RVC : 2. : VR
RECIPROCAL OF THE SPEED OF SOUND

SYB : 1., : 1.
SINE (YB); YB

2*PTI/NB

SYc : 1. : 1.
SINE (YC); YC

ANGLE TO ROTATE ROTOR AXES TO TEETER AXES

SYR2 : 1. : 1,
SINE (YR2); YR2 = ROTOR SHAFT ANGLE WITH RESPECT TO VERTICAL

ZU : 10. : 1./R
ROTOR UNDER- OR SIDE-SLING.

C TOWER SHADOW AND WIND SHEAR
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c

C FOR CONVENIENCE THESE EFFECTS HAVE BEEN INCLUDED IN THE ROTOR MODEL.
C NORMALLY THEY ARE PART OF THE "AIR MASS"™ SUBSYSTEM.

c

SHADOW : 1. : 1.
AIR VELOCITY REDUCTION DUE TO TOWER SHADOW : (.28 => 28 %).

SHDSEC : 1. : 1
COSINE OF HALF THE ANGLE DEFINING THE TOWER SHADOW SECTOR.

SHEAR : 1. : 1.
WIND SHEAR STRENGTH EXPRESSED AS A FRACTION. (.15 => 15 %)
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c

C SUPPORT SYSTEM : 2.0

c

C

DS11,DS22,DS33 : .5,.5,.25 : 1./0R+2
DAMPING (DIAGONAL) MATRIX-SUPPORT SYSTEM MODAL EQUATIONS.

DTS : 10, : OR
NUMERICAL INTEGRATION DT : SUPPORT SYSTEM

GSF11,GSF13,GSF22,GSF32 : .5,2.5,.5,.5 : FR/RAR+3
PARTICIPATION FACTOR ON FORCE-SUPPORT SYSTEM

GSM12,GSM23,GSM31 : 2.,.5,1. : MR/RAR+2
PARTICIPATION FACTORS ON MOMENT-SUPPORT SYSTEM

svll,sv22,sv23,sv3l : 20.,20.,20.,20. : 1./R+3
TRANSLATIONAL VELOCITY MODAL MATRIX-SUPPORT SYSTEM

SW13,5W21,SW32 : 5.,5.,10. : 1l.+2
ROTATIONAL VELOCITY MODAL MATRIX~SUPPORT SYSTEM.

W2S11,W2S22,w2833 : .05,.05,.025 : 1./RAR+2
FREQUENCY SQUARED(DIAGONAL)MATRIX-SUPPORT SYSTEM MODAL EQUATIONS.

C CONTROLS : 3.0

c

AA2]1,AA22 : ,01,.04 : 1./0R+l
CHARACTERISTIC MATRIX IN CONTROL SYSTEM STATE EQUATION.

ADO3 : .5 : 1./0R
CONTROL SYSTEM PARTICIPATION FACTOR

AG3 : 1. : 1.
CONTROL SYSTEM PARTICIPATION FACTOR

AZ1,AZ2 : 1.,.01 : 1.+l
CONTROL SYSTEM PARTICIPATION FACTORS

CAl2 : 1. : 1,
CONTROL SYSTEM RESULT OPERATOR,A TO C.

DTC1,DTC2,DTC3 : 1.,12.5,10. : OR+2
NUMERICAL INTEGRATION DT : CONTROLS

LAl3 : .1 : 1./MR
CONTROL SYSTEM RESULT,A TO ALTERNATOR CONTROL

LG : 1. : OR/MR
CONTROL SYSTEM RESULT OPERATOR

LPR : 1. : 1./MR
CONTROL SYSTEM RESULT OPERATOR

PRQ : .5 : 1.
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c

REQUESTED POWER RATIO (REQUESTED POWER/RATED POWER)

SRQ : .5 : 1.
REQUESTED SPEED RATIO = ZREQ/Z0

C POWER TRAIN : 4.0

c

c

BP11,BP12,BP21,BP22 : 5.,.5,1l.,.1 ¢ 1./0R+3
POWER TRAIN DAMPING MATRIX

DTP1,DTP2 : .1,10. : OR+l
NUMERICAL INTEGRATION DT : POWER TRAIN.

KP12,KP22 : .1,.02 : 1./RAR+]
POWER TRAIN STIFFNESS MATRIX.

PL2 : .125 : MR/RAR
CONTROL SYSTEM INFLUENCE FACTOR-POWER TRAIN MODAL.

PM1,PM2 : 2.5,.5 : MR/RAR+l
ROTOR MOMENT INFLUENCE FACTOR-POWER TRAIN MODAL.

PZD1,PZD2 : .5,.1 : l.+1
ROTOR ACCELERATION INFLUENCE FACTOR-POWER TRAIN MODEL.

C AIR MASS : 5.0

c

C

DTG : 16. : OR
GUST FILTER NUMFRICAL INTEGRATION STEP SIZE

GCEV : .0625 : 1.
GAIN IN RETARDATION VELOCITY SERVO.

KAR : 625. : FR/VR*VR

GLAUERT CONSTANT = 1./(2.*PI*R*R*RHOO0); RHOO = STANDARD AIR DENSITY

RHOR : .5 : l.
AIR DENSITY RATIO = RHOO/RHO; (STANDARD SEA LEVEL / ACTUAL)

VGU11,VGU22,VGU33 : 2,5+2 : 1./R+¥2
WINDGUST TRANSLATIONAL VELOCITY COEFFICIENT MATRIX

WGG11,WGG22 ,WGG33,WGG44 ,WGG55,WGG66 : .0625+5 : 1./RAR+S
WINDGUST FILTER ROTATIONAL FREQUENCIES (RAD/SEC).

WGU11,WGU22,WGU33 : 2.5+2 : 1l.+2
WINDGUST ROTATIONAL VELOCITY COEFFICIENT MATRIX

ZTG11,2TG22,ZTG33,2TG44 ,2TG55,2ZTG66 : 145 : l.+5
DAMP ING COEFFICIENTS IN WINDGUST FILTERS.

C TOWER SHADOW AND WIND SHEAR
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C
C FOR CONVENIENCE THESE EFFECTS HAVE BEEN INCLUDED IN THE ROTOR MODEL.
C
C EXPANDED VERSION OF CONSTANTS AT EACH RADIAL STATION.
C THE 11 RADIAL STATIONS ARE DESIGNATED "A" THROUGH "K".
o
BOO(1)A+2 : 1.,5.+1 : 1./R+2

BOO(1)B+2 : 1.,,5.+1 : 1./R+2

BOO(1)C+2 : 1.,5.+1 : 1./R+2

BOO(1)D+2 : 1.,5.+1 : 1./R+2

1./R+2

BOO(L)E+2 : 1.,5.+1

BOO(1)F+2 : 1.,5.+1 : 1./R+2

BOO(1)G+2 : 1.,5.+1 : 1./R+2

BOO(1)H+2 : 1.,5.+1 : 1./R+2

BOO(1)I+2 : 1,,5.+41 : 1./R+2

BOO(1)J+2 : 1.,5.+1 : 1./R+2

BOO(1)K+2 : 1.,5.41 : 1./R+2

CBA : .5 : 1./C34

CBB : .5 : 1./C34

CBC : .5 : 1./C34

CBD : .5 : 1./C34

CBE : .5 : 1./C34

CBF : .5 : 1./C34
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CBG : .5 : 1./C34

.o

CBH : .5 : 1./C34

CBI : .5 : 1./C34

CBJ : .5 : 1./C34

CBK : .5 : 1./C34

DA(1)1A+2,DA(1)2A+2,DA(1)3A+2

DA(1)1B+2,DA(1)2B+2,DA(1)3B+2 :

DA(1)1C+2,DA(1)2C+2,DA(1)3C+2

DA(1)1D+2,DA(1)2D+2,DA(1)3D+2 :

DA(1)1E+2,DA(1)2E+2,DA(1)3E+2 :

DA(1)1F+2,DA(1)2F+2,DA(1)3F+2 :

DA(1)16+2,DA(1)2G+2,DA(1)3G+2

DA(1)1H+2,DA(1)2H+2,DA(1)3H+2 :

DA(1)11+2,DA(1)2I+2,DA(1)31+2

DA(1)1J+2,DA(1)2J+2,DA(1)3J+2 :

DA(1)1K+2,DA(1)2K+2,DA(1)3K+2

DB(1)1A+2,DB(1)2A+2,DB(1)3A+2

DB(1)1B+2,DB(1)2B+2,DB(1)3B+2

1.+8 : 1.48
1.+8 : 1.+8
1.+8 : 1.+48
1.+8 : 1.+8
1.+8 : 1.+48
1.+8 : 1.+8
1.+8 : 1.48
1.+8 : 1.+8
1.+8 : 1.+8
1.+8 : 1.+8
1.+48 : 1.48

: 5.,2.5+1,5.,2.5+1,5.,2.5+1 : 1./R+8

.

5¢,245+1,5.,2.5+1,5.,2.5+1 : 1./R+8
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DB(1)1C+2,DB(1)2C+2,DB(1)3C+2 : 5.,2.5+1,5.,2.5+1,5.,2.5+1 : 1./R+8

DB(1)1D+2,DB(1)2D+2,DB(1)3D+2 : 5.,2.5+1,5.,2.5+1,5.,2.5+1 : 1./R+8

DB(1)1E+2,DB(1)2E+2,DB(1)3E+2 : 5.,2.5+1,5.,2.5+1,5.,2.5+1 : 1./R+8

DB(1)1F+2,DB(1)2F+2,DB(1)3F+2

5.0,2.5+1,5.,2.5+1,5.,2.5+1 1./R+8

DB(1)1G+2,DB(1)2G+2,DB(1)3G+2 : 5.,2.5+1,5.,2.5+1,5.,2.5+1 : 1./R+8

DB(1)1H+2,DB(1)2H+2,DB(1)3H+2 : 5.,2.5+1,5.,2.5+1,5.,2.5+1 : 1./R+8
DB(1)1I+2,DB(1)2I+2,DB(1)3I+2 : 5.,2.5+1,5.,2.5+1,5.,2.5+1 : 1./R+8
DB(1)1J+2,DB(1)2J+2,DB(1)3J+2 : 5.,2.5+1,5.,2.5+1,5.,2.5+1 : 1,./R+8

DB(1)1K+2,DB(1)2K+2,DB(1)3K+2 : 5.,2.5+1,5.,2.5+1,5.,2.5+1 : 1./R+8

DSA : 10, : 1l./R

DSB : 10, : 1./R

DSC : 10, : 1./R

DSD : 10. : 1l./R

DSE : 10, : 1./R

DSF : 10. : l./R

DSG : 10, : 1./R

DSH : 10, : 1./R

DSI : 10, : 1./R
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DSJ : 10.

DSK : 10,

FAO(1)A+2 :

FAO(1)B+2 :

FAO(1)C+2

FAO(1)D+2

FAO(1)E+2

FAO(1)F+2 :

FAO(1)G+2

FAO(1)H+2

FAO(1)I+2 :

FAO(1)J+2 :

FAO(1)R+2

FP(1)1A+2,FP(1)2A+2,FP(1)3A+2 :

FP(1)1B+2,FP(1)2B+2,FP(1)3B+2 :

FP(1)1C+2,FP(1)2C+2,FP(1)3C+2 :

FP(1)1D+2,FP(1)2D+2,FP(1)3D+2 :

FP(1)1E+2,FP(1)2E+2,FP(1)3E+2 : ,242,.4+2,1.,1.,.5 :

FP(1)1F+2,FP(1)2F+2,FP(1)3F+2 : .2+2,.4+2,1.,1.,.5 ¢

: 1./R

1./R

«5,+25,.1

e5,425,.1

¢5,425,.1

.5,.25,.1

¢5,¢25,.1

¢5,.25,.1

.5,.25,.1

.5,.25,.1

¢5,425,.1

.5,.25,.1

05’025’.1

3

.o

NB*R/FR+2

NB*R/FR+2

NB*R/FR+2

NB*R/FR+2

NB*R/FR+2

NB*R/FR+2

NB*R/FR+2

NB*R/FR+2

NB*R/FR+2

NB*R/FR+2

NB*R/FR+2
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o2+2,.4+42,1.,1.,.5 :

W2+2,.4+2,1.,1.,.5 ¢

o242, .442,1.,1.,.5

J242,.442,1.,1.,.5 ¢

1.48




FP(1)1G+2,

FP(1)1H+2,

FP(1)1I+2,

FP(1)1J+2,

FP(1)1K+2,

GP(l)1A+2,

GP(1)4A+2 :

GP(1)1B+2,

GP(1)4B+2 :

GP(1)1C+2,

GP(1)4C+2

GP(1)1D+2,

GP(1)4D+2

GP(1)1E+2,

GP(1)4E+2 :

GP(1)1F+2,

GP(1)4F+2

GP(1)1G+2,

FP(1)2G+2,FP(1)3G+2 : .2+2,.4+2,1.,1.,.5
FP(1)2H+2,FP(1)3H+2 : .242,.4+2,1.,1.,.5
FP(1)2I+2,FP(1)3I+2 : .2+2,.4+2,1.,1.,.5
FP(1)2J+2,FP(1)3J4+2 : .2+2,.4+2,1.,1.,.5
FP(1)2K+2,FP(1)3K+2 : .2+2,.4+2,1.,1.,.5
GP(1)2A+2,GP(1)3A+2 : .05+2,.1+2,.25+2 :
1.,1.,.8 : FR/NB*RAR+l,FR*C34/NB*R*RAR
GP(1)2B+2,GP(1)3B+2 : .05+2,.1+2,.25+2

l.,1.,.8 : FR/NB*RAR+l,FR*C34/NB*R*RAR

GP(1)2C+2,GP(1)3C+2 : .05+2,.1+2,.25+2

1.,1.,.8 : FR/NB*RAR+],FR*C34/NB*R*RAR

GP(1)2D+2,GP(1)3D+2 : .05+2,.1+2,.25+2

l.,1.,.8 : FR/NB*RAR+l,FR*C34/NB*R*RAR

GP(1)2E+2,GP(1)3E+2 : .05+2,.1+2,.,254+2 :

1.,1.,.8 : FR/NB*RAR+],FR*C34/NB*R*RAR

GP(1)2F+2,GP(1)3F+2 : .05+2,.1+2,.25+2

: 1.,1.,.8 : FR/NB*RAR+l,FR*C34/NB*R*RAR

GP(1)2G+2,GP(1)3G+2 : .05+2,.1+2,.25+2

F-25

ot
+
[o-]

—
+
o

: 1.+8

1.+8

1.+8

FR/NB*RAR+8

: FR/NB*RAR+8

: FR/NB*RAR+8

: FR/NB*RAR+8

FR/NB*RAR+8

: FR/NB*RAR+8

: FR/NB*RAR+8



GP(1)4G+2 : 1.,1.,.8 : FR/NB*RAR+1,FR*C34/NB*R*RAR
GP(1)1H+2,GP(1)2H+2,GP(1)3H+2 : .05+2,.1+2,.25+2 : FR/NB*RAR+8
GP(1)4H+2 : 1.,1.,.8 : FR/NB*RAR+1,FR*C34/NB*R*RAR
GP(1)11+2,GP(1)2I+2,GP(1)3I+2 : .05+2,.1+2,.25+2 : FR/NB*RAR+8
GP(1)4I+2 : 1.,1.,.8 : FR/NB*RAR+1,FR*C34/NB*R*RAR
GP(1)1J+2,GP(1)2J+2,GP(1)3J+2 : .05+2,.1+2,.25+2 : FR/NB*RAR+8
GP(1)4J+2 : 1.,1.,.8 : FR/NB*RAR+L,FR*C34/NB*R*RAR
GP(1)1K+2,GP(1)2K+2,GP(1)3K+2 : .05+2,.142,.25+2 : FR/NB*RAR+8
GP(1)4K+2 : 1.,1.,.8 : FR/NB*RAR+1,FR*C34/NB*R*RAR

MBA : .025 : NB*VR*VR/FR

MBB : ,025 : NB*VR*VR/FR

MBC : .025 : NB*VR*VR/FR

MBD : .025 : NB*VR*VR/FR

MBE : .025 : NB*VR*VR/FR

MBF : .025 : NB*VR*VR/FR

MBG : .025 : NB*VR*VR/FR

MBH : .025 : NB*VR*VR/FR

MBI : .025

e

NB*VR*VR/FR

F-26




MBJ : .025 : NB*VR*VR/FR

MBK : .025 :

NB*VR*VR/FR

MP(1)1A+2,MP(1)2A+2,MP(1)3A+2

MP(1)1B+2,MP(1)2B+2,MP(1)3B+2

MP(1)1C+2 ,MP(1)2C+2,MP(1)3C+2

MP(1)1D+2,MP(1)2D+2,MP(1)3D+2

MP(1)1E+2,MP(1)2E+2 ,MP(1)3E+2

MP(1)1F+2,MP(1)2F+2 ,MP(1)3F+2

MP(1)1G+2 ,MP(1)2G+2,MP(1)3G+2

MP(1)1H+2,MP(1)2H+2 ,MP(1)3H+2

e2,05+1,.4,1.41,1.,1.25,2.5

\2,.5+,.4,1.41,1.,1.25,2.5

e2,.5+1,.4,1.41,1.,1.25,2.5

¢2,.5+1,.4,1.+1,1.,1.25,2.5

.2’.5+1’.4’1.+1’1.’1.25’2.5

t e2,.5+1,.4,1.+1,1.,1.25,2.5

MP(1)1I+2,MP(1)21+2 ,MP(1)3I+2 :

MP(1)1J+2,MP(1)2J+2,MP(1)3J+2

02,.5+1,.4,1.+1,1.,1.25,2.5

«2,.5+1,.4,1.41,1.,1.25,2.5 :

02,.5+1,.4,1,+1,1,,1.25,2.5 :

: «2,.5+1,.4,1.41,1.,1.25,2.5

MP(1)1K+2,MP(1)2K+2,MP(1)3K+2 :

RFSA : 1. : 1.
RFSB : 1. : 1,
RFSC : 1. : 1.
RFSD : 1. : 1.
RFSE : 1. : 1.
RFSF : 1. ¢ 1.

e2,.5+1,.4,1.+1,1.,1.25,2.5
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1./R+8

1./R+8

1./R+8

1./R+8

1./R+8

1./R+8

1./R+8

1./R+8

1./R+8

: 1./R+8

: 1./R+8



RFSG : 1. : 1.

RFSH : 1. : 1.

RFST : 1. : 1.

RFSJ : 1. : 1.

RFSK : 1. : 1.

ROO(1)1A+2,R00(1)2A+2,R00(1)3A+2 :

ROO(1)1B+2,R00(1)2B+2,R00(1)3B+2 :

ROO(1)1C+2,R00(1)2C+2,R00(1)3C+2

ROO(1)1D+2,R00(1)2D+2,R00(1)3D+2 :

ROO(1)1E+2,RO0(1)2E+2,R00(1)3E+2

ROO(1)1F+2,R00(1)2F+2,R00(1)3F+2 :

ROO(1)1G+2,R00(1)2G+2,R00(1)3G+2 :

ROO(1)1H+2,R00(1)2H+2,RO0(1)3H+2 :

ROO(1)11+2,R00(1)21+2,R00(1)31+2

ROO(1)1J+2,R00(1)2J+2,R00(1)3J+2 :

ROO(1)1K+2,R00(1)2K+2,R00(1)3K+2 : le,2.42,1.41,2,,1.+1 :

SA : 1. : 1./R

SB : 1. : 1./R

le,2.42,1.41,2,,1.+1 : 1.48

1o,2.42,1.41,2.,1.+1

t1a,2.42,1.41,2,,1.41

lo,2.42,1.+1,2,,1.+1 :

$1.,2.42,1.41,2.,1.+1

l.,2.42,1.41,2,,1.+1 :

1.,2.42,1.41,2.,1.41 3

le,2.42,1.41,2,,1.41 :

$1e,2.42,1.+41,2.,1.+1 :

1.,2.42,1.41,2.,1.41 :
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: 1.+8




SC :

SD

SE :

SF

SG

SH

e

SI :

SJ

SK :

)

1.

1.

1.

1.

1.

1.

1./R

1./R

: 1./R

1./R

H lo/R

1./R

: 1./R

1./R

: 1./R
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APPENDIX G

PHYSICAL EQUATIONS OF THE WIND TURBINE SIMULATION MODEL

Presented in this Appendix are the physical equations which constitute
the simulation model of a wind turbine. These equations have to be scaled
and normalized for use in WEST-3.

Page
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Support (tower) .....eeeece.. B o K-




C
C**********************************************************************
C

C WEST-3 PHYSICAL EQUATIONS: JUNE 1985

c
C**********************************************************************

c

C

C INITIALIZATIONS

c
NB = 2
NR = 11

c
Z = ZINT
ZD= 0

c
CY = 1.
SsY =0
CDY= 1.

c
VH1= VBHI
VH2= VBH2
VH3= VBH3
WH1= WBHI
WH2= WBH2
WH3= WBH3

c
VDH1= VDBHI
VDH2= VDBH2
VDH3= VDBH3
WDH1= WDBH1
WDH2= WDBH2
WDH3= WDBH3

c
VWTIL = Wl
VWT2 = VW2
VWT3 = W3
WWT1 = WWl
WWT2 = WW2
WWT3 = WW3
VRW =0

c
S1 =0
s2 =20
s3 =0
Spl= 0
sp2= 0
SD3= 0

C
Cl1 =0
Al 0
A2 =0
A3 =0
ZA =0

c




PDl= 2

P2 =0

PD2= 0

c

C SET ALL MODAL QUANTITIES TO ZERO

C

CALL LOADQS (0)

c
C

ChExkkkkkkkkkkkkk* BEGINING OF INFINITE LOOP %k ok k k% sk ks

c

9000 CONTINUE

AEROELASTIC

ROTOR SPEED

cNeoEeNeoNeNe!

ZP = Z
2Z = (
28Q =
1.2 HUB TO S

MANY OF
BLADES,

GEOMETRY

RN N EsEes N X!

SYT =
CYT =

INERTIAL VEL

e NeoNe]

WTUMZ1
WTUMZ2
WTUMZ3
VTULl =
VTU2 =
VTU3 =

WCMZ1
WCMZ2
WCMZ3
VCl =
vCc2
vc3

[eNeNe]

WAH1
WAH2
WAH3
VAH1
VAH2

ROTOR MODEL
VARIABLES

/20 - 1.
Z/20)*(z/z0) - 1.
zZ* z

HANK TRANSFORMATIONS

THE TRANSFORMATIONS ARE COMMON TO ALL THE
AND ARE PROCESSED OUTSIDE THE BLADE LOOP.

SYC*CY - CYC*SY
CYC*CY + SYC*SY

OCITY

= CYT*WHl + SYT*WH2

==SYT*WH1 + CYT*WH2

= WH3

CYT*VH1 + SYT*VH2 + ZU*WTUMZ2
=SYT*VH]1 + CYT*VH2 - ZU*WTUMZ1
VH3

WIUMZ1 - WTUMZ3*QGl + Z*QGl
WIUMZ2 + QDG

WIUMZ3 + WTUMZ1*QGl

VTUL - VTU3*QGl - ZU*WCMZ2
VTU2 + ZU*WCMZ1

VTU3 + VTU1*QGl

AERO VELOCITY

WH1 + WWT1*CYR2 - WWI3*SYR2
WH2 + WWT2
WH3 + WWT1*SYR2 + WWI3*CYR2
VH] + VWT1*CYR2 - VWI3*SYR2
VH2 + VWT2



C

VAH3 = VH3 + VWTL*SYR2 + VWI3*CYR2

WATULl = CYT*WAH1 + SYT*WAH2
WATU2 =-SYT*WAHl + CYT*WAH2

WATU3 = WAH3 - Z
VATUl = CYT*VAH1 + SYT*VAH2 + ZU*WATU2

VATU2 =-SYT*VAH1 + CYT*VAH2 - ZU*WATUl
VATU3 = VAH3

WAC1 = WATUl - WATU3*QGl

WAC2 = WATU2 + QDGI1

WAC3 = WATU3 + WATU1*QGl

VAC1 = VATU1l - VATU3*QGl - ZU*WAC2
VAC2 = VATU2 + ZU*WACl

VAC3 = VATU3 + VATU1*QGl

C TIME DERIVATIVE OF INERTIAL VELOCITY.

c

c

DUMlI = VDHI - Z*VH2
DUM2 = VDH2 + Z*VH1
TEMPl = WDH1 - Z*WH2
TEMP2 = WDH2 + Z*WH1

WDTUL = CYT*TEMPl + SYT*TEMP2

WDTU2 =-SYT*TEMP1 + CYT*TEMP2

WDTU3 = WDH3-ZD

VDTUL = CYT*DUML + SYT*DUM2 + ZU*WDTU2
VDTU2 =-SYT*DUM1 + CYT*DUM2 - ZU*WDTUlL

DUM3 = WDTUl - WTUMZ3*QDGl + Z*QDGl
DUM4 = WDTU3 + WTUMZ1*QDG1

TEMP3= VDTUl - VTU3*QDG1

TEMP4= VDH3 + VTUL*QDGl

WDC1 = DUM3 —- DUM4*QGl

WDC2 = WDTU2 + QDDGI

WDC3 = DUM4 + DUM3*QGl

VDCl = TEMP3 - TEMP4*QGl - ZU*WDC2
YDC2 = VDTU2 + ZU*WDCl

VDC3 = TEMP4 + TEMP3*QGl

C INITIALIZATIONS FOR BLADE LOOP

C

c

I=20
SYBI =-SYB
CYBI = CYB

MULTIBLADE COORDINATE AND LOADS.

Qs1=0
QC1=0
Q01=0
QDS1=0
QDC1=0




QD01=0

C
QS2=0
QC2=0
Q02=0
QDS2=0
QDC2=0
QD02=0
c
QS3=0
QC3=0
Q03=0
QDS3=0
QDC3=0
QD03=0
c
FGR1=0
FGR2=0
FGR3=0
C
MGR1=0
MGR2=0
MGR3=0
c
C***************** BEGINING OF BLADE LOOP de ek Jo o ek K e de de e e g de e e e de gk e ke
C
C 1.1 BLADE NUMBER SELECT
C
9001  CONTINUE
c
I=1+1
C
SYBISV = SYBI
SYBI = SYB*CYBI + CYB*SYBI
CYBI = CYB*CYBI - SYB*SYBISV
C
C LOAD QI,QDI AND QDDI FOR BLADE I FROM
C SPACE CONTAINING Q, QD AND QDD FOR ALL BLADES.
C
CALL LOADQS(I)
C
C
C 1.2 HUB TO SHANK TRANSFORMATIONS
C
C THESE TRANSFORMATIONS DEPEND ON THE BLADE AZIMUTHAL POSITION
c
C GEOMETRY
c
CYI = CY*CYBI - SY*SYBI
SYI = SY*CYBI + CY*SYBI
c
SYCBI = SYC*CYBI + CYC*SYBI
CYCBI = CYC*CYBI - SYC*SYBI
C
C BLADE FEATHERING CONTROL ANGLE




C
F = Cl - C2*CYI - C3*SYIL

C

C AERO VELOCITY

c
WAS1 = CYCBI*WAC1 - SYCBI*WAC2
WAS2 = SYCBI*WACl + CYCBI*WAC2
WAS3 = WAC3
VAS1 = CYCBI*VACl - SYCBI*VAC2
VAS2 = SYCBI*VACl + CYCBI*VAC2
VAS3 = VAC3

c

C INERTIAL VELOCITY

C
WSMZ1 = CYCBI*WCMZ1 - SYCBI*WCMZ2
WSMZ2 = SYCBI*WCMZl + CYCBI*WCMZ2
WSMZ3 = WCMZ3
VSl = CYCBI*VCl - SYCBI*VC2
VS2 = SYCBI*VCl + CYCBI*VC2
VS3 = VC3

c

C TIME DERIVATIVE OF INERTIAL VELOCITY.

c
WDS1 = CYCBI*WDCl - SYCBI*WDC2
WDS2 = SYCBI*WDCl + CYCBI*WDC2
WDS3 = WDC3
VDSl = CYCBI*VDCl - SYCBI*VDC2
VDS2 = SYCBI*VDCl + CYCBI*VDC2
VDS3 = VDC3

c

C ACCELERATION TERMS FOR USE IN SECTION 1.7

c

C MANY OF THE TERMS NEEDED FOR COMPUTING THE DISTRIBUTED

C INERTIA LOADS AT EACH BLADE RADIAL STATION ARE COMMON TO

C ALL THE STATIONS, AND ARE GENERATED OUTSIDE THE BLADE LOOP
C

USl = VDSl + WSMZ2*VS3 - WSMZ3*VS2 + Z*VS2
US2 = VDS2 + WSMZ3*VSl - WSMZ1*VS3 - Z*VSl
US3 = VDS3 + WSMZ1*VS2 - WSMZ2*VSl

c
C THE PHYSICAL EQUATION FOR THE NEXT STATEMENT IS ... TERM = WSMZ3 - 2 * Z
c

TERM = WSMZ3 - 2.*Z

Ull = -WSMZ3*TERM - WSMZ2*WSMZ2

U22 = -WSMZ3*TERM ~— WSMZ1*WSMZ1

U33 = ~WSMZ2*WSMZ2 - WSMZ1*WSMZ1

C
Ul2 = WSMZ2*WSMZ1
Ul3 = WSMZ3*WSMZ1 - Z*WSMZ1
U23 = WSMZ3*WSMZ2 ~ Z*WSMZ2
C
C INITIALIZE FOR RADIAL INTEGRATION OF BLADE,I.
C
J=0
C

——— . -




X1=0

X2=0
X3=0
XD1=0
XD2=0
XD3=0
XDD1=0
XDD2=0
XDD3=0
c
GRI1=0
GRI2=0
GRI3=0
c
FRI1=0
FRI2=0
FRI3=0
c
MRI1=0
MRI2=0
MRI3=0
C
Chikkkhkkhhhkhikkk BEGINING OF RADIAL LOOP e e J e Je e % K e o o de e de e de e ok e ok Kk
c
C 1.3 RADIAL STATION COUNTER.
c
9002 CONTINUE
J=J+1
Cc
C 1.4 RADIAL PHYSICAL PARAMETER BLOCKMOVE. MOVE ALL BLADE PHYSICAL
C PROPERTIES FROM A COMMON MEMORY REGION TO A SEPARATE REGION
C APPLICABLE FOR A SINGLE BLADE ELEMENT.
c
Cc ENTITIES MOVED (AND THEIR SIZES) ARE-
C
C R00(9),RFS,DA(B*NM),DB(3*NM),B00(3),GP(4*NM),FP(9),MP(9),
C FAO(3),MB,CB
C
CALL MOVIT(J)
Cc
C
C 1.5 BLADE ELEMENT GEOMETRY
C
C MODAL ANGULAR ACCELERATION: BAX WITH RESPECT TO SAX.
c
EAL = DALI*QIl  + DAI2*QI2 + DAl3*QI3
EDAl = DAI1*QDIl + DAI12*QDI2 + DALl3*QDI3
EDDALl = DA11*QDDI1 + DA12*QDDI2 + DAl3*QDDI3
C
EA2 = DA21*QIl  + DA22*QI2 + DA23*QI3
EDA2 = DA21*QDIl + DA22*QDI2 + DA23*QDI3
EDDA2 = DA21*QDDIl + DA22*QDDI2 + DA23*QDDI3
C
EA3 = DA31*QIl  + DA32*QI2 + DA33*QI3
EDA3 = DA31*QDI1 + DA32*QDI2 + DA33*QDI3




EDDA3 = DA31*QDDI1 + DA32*QDDI2 +

c

C LINEAR MODAL TRANSLATIONAL

c
EB1
EDBI

EDDB1

EB2
EDB2

DBL1*QIl  + DB12*QI2

DB21*QIl + DB22*QI2

BAX MOVEMENT

+

DB11*QDI1 + DBI2*QDI2 +
DB11*QDDI1 + DB12*QDDI2 +

+

DB21*QDI1 + DB22*QDI2 +

EDDB2 = DB21*QDDI1 + DB22*QDDI2 +

EB3
EDB3

QOOO0

FS =

= DB31*QIl  + DB32*QI2

+
= DB31*QDI1 + DB32*QDI2 +
EDDB3 = DB31*QDDIl + DB32*QDDI2 +

RFS*F - RFS*F0

FSQ = FS*FS
CFS = 1. - .5*%FSQ*(1.-.08333*FSQ)

c

DA33*QDDI3
WITH RESPECT TO SAX.

DB13*QI3
DB13*QDI3
DB13*QDDI3

DB23*QI3
DB23*QDI3
DB23*QDDI3

DB33*QI3
DB33*QDI3
DB33*QDDI3

APPROXIMATIONS FOR SINE AND COSINE OF FEATHERING ANGLE, FS.
IF "RFS" IS CONSTANT, THESE CAN BE OUTSIDE THE RADIAL LOOP.

C TRANSFORMATION FROM SAX TO BAX CONTROL POSITION

c
RO11
RO21
RO31
RO12
RO22
RO32
RO13
RO23
RO33

c

C TRANSFORMATION FROM SAX TO BAX FINAL POSITION, FOR USE IN AERO
C COMPUTATIONS. NOT SUITABLE FOR INERTAL LOADS, BECAUSE A LINEAR

C MODEL FOR

c
R1l
R21
R31
R12
R22
R32
R13
R23
R33

c

= ROOL1
= RO021*CFS + ROO31*SFS
=~R0021*SFS + ROO31*CFS
ROO12

R0O022*%CFS + RO032*SFS
~R0022*SFS + RO032*CFS
ROO13

RO023*CFS + ROO33*SFS
-R0023*SFS + RO033*CFS

EA2*RO31
EAL*RO31

RO31

EA2*R032

EA1*RO32

RO32

EA2*R033
EA1*R033

THE ELASTIC ROTATIONS HAS BEEN USED.
= ROL1l + EA3*RO21 -
= -EA3*RO11 + RO21 +
= EA2*RO11 - EAl*RO21 +
= RO12 + EA3*R022 -
= —EA3*R012 + RO22 +
= EA2*R012 - EA1*RO22 +
= RO13 + EA3*R023 -
= -EA3*RO13 + RO23 +
= EA2*RO13 - EAl1*R023 +

C BRL POSITION ENTITIES.

C
BP1

BP2
BP3

X1 + EBl
X2 + EB2
X3 + EB3

RO33




c
C
C

[eReNe]

QOO0 0

a0

BD1 = XDl + EDBI
BD2 = XD2 + EDB2
BD3 = XD3 + EDB3

Bl = BP1 + BOO1
B2 = BP2 + B002
B3 = BP3 + B003

SOLVE FOR IX.

DUM = .5 * (EA2*EA2 + EA3*EA3)

IX1 = DUM*ROO11
IX2 = DUM*R0012
IX3 = DUM*R0013

SOLVE FOR IXD

TEMP5 = -EA3*EDA3 - EA2*EDA2
TEMP6 = 2,*EAl1*EDA2
TEMP7 = 2,*EA1*EDA3

IXD1l = ROO11*TEMP5 + ROO21*TEMP6 + ROQ31*TEMP7
IXD2 = ROOL2*TEMPS + RO022*TEMP6 + RO032*TEMP7
IXD3 = ROOI3*TEMP5 + RO023*TEMP6 + ROO33*TEMP7

SOLVE FOR IXDD.

TEMP8 =  EDA3*EDA3 + .EDA2*EDA2 + EA3*EDDA3 + EA2*EDDA2
TEMP9 = - EDAl*EDA2
TEMP10 = - EDA1*EDA3

IXDD1 = ROO11*TEMP8 + ROO21*TEMP9 + ROO31*TEMP10
IXDD2 = ROO12*TEMP8 + RO022*TEMP9 + ROO32*TEMP10
IXDD3 = ROO13*TEMP8 + ROO23*TEMP9 + ROO33*TEMP10
1.6 SHANK TO BLADE TRANSFORMATIONS
AERO VELOCITY

CORRECTIONS TO THE AERO VELOCITY DUE TO INTERFERENCE EFFECTS. GET THE
AUGMENTIVE AERO VELOCITY, VAA(I), COMPUTED IN THE AIR MASS MODEL.

CALL GETVAA ( J, VAA(I) )

TEMP11l = VASI + BDl + WAS2*B3 - WAS3*B2
TEMP12 = VAS2 + BD2 + WAS3*Bl - WAS1*B3
TEMP13 = VAS3 + BD3 + WAS1*B2 - WAS2*Bl
VAl = RI1*TEMP11 + RI2*TEMP12 + RI3*TEMP13 + VAAl
VA2 = R21*TEMP11 + R22*TEMP12 + R23*TEMP13 + VAA2
VA3 = R31*TEMP1l + R32*TEMP12 + R33*TEMP13 + VAA3



c
C 1.7 DISTRIBUTED INERTIAL LOADS

c
TEMP14 = 2. * (-WSMZ3*BD2 + WSMZ2*BD3 + Z*XD2 )
TEMP15 = 2. * ( WSMZ3*BDl - WSMZ1*BD3 - Z*XDl )
TEMP16 = 2. * ( WSMZ1*BD2 - WSMZ2*BD1 )
C
UMBRI = US1 + XDD1 + TEMPl4 + WDS2*B3 - WDS3*B2
@ + Ul1*Bl + U12*B2 + U13*B3 - ZSQ*X1
C
UMBR2 = US2 + XDD2 + TEMP15 + WDS3*Bl - WDS1*B3
@ + U12*Bl1 + U22*%B2 + U23*B3 - ZSQ*X2
c
UMBR3 = US3+XDD3 + TEMP16 + WDS1*B2 - WDS2*Bl
Q@ + U13*Bl1 + U23*B2 + U33*B3
C
FMI1 = - MB*UMBRI
FMI2 = - MB*UMBR2
FMI3 = - MB*UMBR3
C
C
C 1.8 AERO GEOMETRY
C
M2 = VA2*RVC
M3 = VA3*RVC
C
C COMPUTE M, SAB, AND CAB BY USING M2 AND M3,
C
CALL TRIGAR (M2,M3,M,SAB,CAB)
C
C
C 1.9 AERODYNAMIC COEFFICIENT TABLES
C
CALL LOOKUP (SAB,CAB,CFA2,CFA3,CMAl)
o
C 1.10 DISTRIBUTED AIR LOADS
C
QAC = 1481, * M * M * CB * PR
FABC2 = - QAC * CFA2
FABC3 = - QAC * CFA3
C

C TIP LOSS CORRECTION: EQUIVALENT TO AN EFFECTIVE RADIUS OF 97 Z.
o
IF (TIPLOS .EQ. 0) GO TO 1110
IF (J .NE. 11) GO TO 1110
FABC3 = .4 * FABC3
1110 CONTINUE

c
RR12 = R21*CAB + R31*SAB
RR13 = -R21*SAB + R31*CAB
RR22 = R22*CAB + R32*SAB
RR23 = -R22*SAB + R32*CAB
RR32 = R23*CAB + R33*SAB
RR33 = -R23*SAB + R33*CAB

C
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RR12*FABC2 + RRI3*FABC3 — FAOL
RR22*FABC2 + RR23*FABC3 - FAO2
RR32*FABC2 + RR33*FABC3 - FAO3
QAC * CMAl * CB

FMAL
FMA2
FMA3
FMA4

1.11 LOADS INTEGRAND ASSEMBLER.

[eNeNe!

FMB1 = FMI1 + FMAl
FMB2 = FMI2 + FMA2
FMB3 = FMI3 + FMA3

IGRlI = GPl11*FMBl + GP12*FMB2 + GP13*FMB3
IGR2 = GP21*FMBl + GP22*FMB2 + GP23*FMB3
IGR3 = GP34*FMA4

IFR1 = FP11*FMBl + FP12*FMB2 + FP13*FMB3
IFR2 = FP21*FMBl + FP22*FMB2 + FP23*FMB3
IFR3 = FP31*FMBl + FP32*FMB2 + FP33*FMB3

TEMP21 = EDDBl + 2,*Z*EDB2 - ZSQ*EBl1
TEMP22 = EDDB2 - 2,.*Z*EDBl - ZSQ*EB2

MB*TEMP21
MB*TEMP22
MB*EDDB3

DUM8 =
DUM9 =
DUM10=

TEMP23
TEMP24

MB*Z0*Z0*B00O1 + FAO1
MB*Z0*Z0*B002 + FA02

IMR1 = MP11*FMBl + MP12*FMB2 + MP13*FMB3
BP2*FMB3 - BP3*FMB2 - BP3*DUM9 + BP2*DUMIO
X2*FAO03 - X3*TEMP24

D D
+ +

IMR2 = MP21*FMBl +'MP22*FMB2 + MP23*FMB3
BP3*FMB1 - BP1*FMB3 - BP1*DUMIO + BP3*DUM8

X3*TEMP23 - X1*FA03

> ®
+ 4+

IMR3 = MP31*FMBl1 + MP32*FMB2 + MP33*FMB3
BP1*FMB2 - BP2*FMBl1 + BP1*DUM9 - BP2*DUM8

@
@ X1*TEMP24 - X2*TEMP23

+ +

1.12 RADIAL SUMMATIONS.

[eNoNe!

X1
X2
X3

X1 + DS * IX1
X2 + DS * IX2
X3 + DS * IX3

XDl = XDl + DS * IXDIl
XD2 = XD2 + DS IXD2
XD3 = XD3 + DS * IXD3

*

XDD1
XDD2
XDD3

XDD1 + DS * IXDD1
XDD2 + DS * IXDD2
XDD3 + DS * IXDD3

oo
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GRIl = GRI1 + DS*IGRI
GRI2 = GRI2 + DS*IGR2
GRI3 = GRI3 + DS*IGR3
FRI1 = FRI1 + DS*IFRI
FRI2 = FRI2 + DS*IFR2
FRI3 = FRI3 + DS*IFR3

MRI1 = MRI1 + DS*IMRIl
MRI2 = MRI2 + DS*IMR2
MRI3 = MRI3 + DS*IMR3

C TEST FOR COMPLETION OF RADIAL STATIONS.

IF (J .LT. NR) GO TO 9002

C
Ckxkkkkkkkkxkkkkk* END OF RADIAL LOOP kkkkdkhhhhhkkhkkkkkhihkihk

Cm=——- SAVE FORCES AND MOMENTS OF BLADE # 1 FOR
c COMPUTATION OF ROOT LOADS IN SHANK AXES.

IF (I .GT. 1) GO TO 1130
FTEML FRI1
FTEM2 FRI2
FTEM3 FRI3
MTEMI] MRI1
MTEM2 MRI2
MTEM3 = MRI3

wuun

1.13 MODAL COORDINATE INTEGRATIONS

OO0

1130 CONTINUE
C
DUM11=ZP*QDI1
DUM12=ZP*QDI2
DUM13=ZP*QDI3

DUM21=ZP*QI1
DUM22=ZP*QI2
DUM23=ZP*QI3

TEMP25=2Z*QI1
TEMP26=22*QI2
TEMP27=2Z*QI3

c

C GENERALIZED MODAL EXCITATIONS

Cc

GI1=GRI1+GV11*QDI1+GZQ11*TEMP25+GZV11*DUMI1
+GV12*QDI2+GZQ12*TEMP26+GZV12*DUM1 2
+GV13*QDI3+GZQ13*TEMP27+GZV 13*DUML 3+ZZ*GBO1

™ o

GI2=GRI2+GV21*QDI1+GZQ21*TEMP25+GZV21*DUM1 1
+GV22*QDI12+GZQ22*TEMP26+GZV22*DUM1 2
+GV23*QDI3+GZQ23*TEMP27+GZV23*DUM13+2Z*GB02

o e
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GI3=GRI3+GV31*QDI1+GZQ31*TEMP25+GZV31*DUM11

@ +GV32*QDI2+GZQ32*TEMP26+GZV32*DUM12
@ +GV33*QDI3+GZQ33*TEMP 27+GZV 33*DUM1 3+ZZ*GB03
C
DUM24=ZP*GI1
DUM25=ZP*GI2
DUM26=ZP*GI3
C
C MODE # 1 ENTITIES
c
QSIl1 = QIl
QIl = KQQL1*QSIl + KQVII*QDI1 + KQGl1*GIl
@ + KQZQl1*DUM21 + KQZV11*DUM11 + KQZGl1*DUM24
QDI1 = KVQI1*QSI1 + KVVI1*QDI1 + KVGl1*GIl

@ + KVZQLl1#*#DUM21 + KVZV11*DUM1l + KVZGl1*DUM24
QDDI1 = GI1 - ESQQl1*QIl

C
C MODE # 2 ENTITIES
C
QSI2 = QI2
QI2 = KQQ22*QSI2  + KQV22*QDI2 + KQG22*GI2
@ + KQZQ22*DUM22 + KQZV22*DUM12 + KQZG22*DUM25
QDI2 = KVQ22*QSI2 + KVV22*QDI2 + KVG22*GI2
a + KVZQ22*DUM22 + KVZV22*DUM12 + KVZG22*DUM25
QDDI2 = GI2 - ESQQ22*QI2
C
C MODE # 3 ENTITIES
C
QSI3 = QI3
QI3 = KQQ33*QSI3  + KQV33*QDI3  + KQG33*GI3
@ + KQZQ33*DUM23 + KQZV33*DUMI3 + KQZG33*DUM26
QDI3 = KVQ33*QSI3  + KVV33*QDI3 + KVG33*GI3
@ + KVZQ33*DUM23 + KVZV33*DUMI13 + KVZG33*DUM26
QDDI3 = 0
Cc
C SAVE MODAL STATE VARIABLES
C
CALL STORQS(I)
C
C
C l.14 MULTIBLADE MODAL COMBINATIONS
o

SYBION=RNB*SYBI
CYBION=RNB*CYBI

C
QS1=QS1+QI1*SYBION
QC1=QC1+QI1*CYBION
Q01=Q01+QI1*RNB

C
QDS1=QDS1+QDI1*SYBION
QDC1=QDC1+QDI1*CYBION
QDO1=QDO1+QDI1*RNB

C

QS2=QS2+QI2*SYBION
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QC2=QC2+QI2*CYBION
Q02=Q02+QI2*RNB

QDS2=QDS2+QDI2*SYBION
QDC2=QDC2+QDI2*CYBION
QDO02=QD0 2+QDI2*RNB

QS3=QS3+QI3*SYBION
QC3=QC3+QI3*CYBION
Q03=Q03+QI3*RNB

QDS3=QDS3+QDI3*SYBION
QDC3=QDC3+QDI3*CYBION
QD03=QDO3+QDI3*RNB

C 1.15 MULTIBLADE LOADS COMBINATIONS
FGR1 + CYBION*FRIl + SYBION*FRI2

FGR2 SYBION*FRI1 + CYBION*FRI2
FGR3 + RNB*FRI3

FGRI1
FGR2
FGR3

MGR1 = MGR1 + CYBION*MRIl + SYBION*MRI2
MGR2 = MGR2 SYBION*MRI1 + CYBION*MRI2
MGR3 = MGR3 + RNB*MRI3

TEST FOR COMPLETION OF BLADES.

IF (I .LT. NB) GO TO 9001

kkkkkkkkkkkkkkkk* END OF BLADE LOOP *¥kkkkkkikkkkikkkkkkiikik

1.16 GIMBAL LOADS SUMMATION

OOO0O0O0 *x0O0000

FSQ11=FQl1+FZQ11*ZZ
FSQ21=FQ21+FZQ21*ZZ
FSQ31=FQ31+FZQ31*ZZ

FSQDL 1=FQD1 1+FZQD1 1 *ZP
FSQD21=FQD2 1+FZQD21*ZP
FSQD31=FQD3 1+FZQD3 1*ZP

MSQ11=MQ11+MZQ11*2ZZ
MSQ21=MQ2 14+MZQ21*ZZ
MSQ31=MQ31+MZQ31*2ZZ

MSQD11=MQDI 1+MZQD1 1*ZP
MSQD2 1=MQD2 1+MZQD2 1 *ZP
MSQD3 1=MQD3 1+MZQD3 1*ZP

FSQ12=FQl2+FZQ12*2Z

FSQ22=FQ22+FZQ22*22
FSQ32=FQ32+FZQ32*22

G-14




FSQD12=FQD12+FZQD1 2*ZP
FSQD22=FQD22+FZQD22*ZP
FSQD32=FQD32+FZQD32*ZP

MSQ12=MQ12+MZQ12*ZZ
MSQ22=MQ22+MZQ22*ZZ
MSQ32=MQ32+MZQ32*ZZ

MSQD12=MQD1 2+MZQD1 2*ZP
MSQD22=MQD22+MZQD22*ZP
MSQD32=MQD3 2+MZQD3 2*ZP

FSQ13=FQl3+FZQl3*ZZ
FSQ23=FQ23+F2Q23*2Z
FSQ33=FQ33+FzQ33*2Z

FSQD13=FQD1 3+FZQD1 3*ZP
FSQD23=FQD23+FZQD23*ZP
FSQD33=FQD33+FZQD33*ZP

MSQ13=MQ13+MZQ13*ZZ
MSQ23=MQ23+MZQ23*ZZ
MSQ33=MQ33+MZQ33*2Z

MSQDI 3=MQD1 3+MZQD1 3*ZP
MSQD23=MQD23+MZQD23*ZP
MSQD33=MQD3 3+MZQD33*ZP

FSO1
FS02
FS03
MSO1
MS02
MS03

FO1 FZ1*z2Z
FO2 FZ2*722
FO3 + FZ3*ZZ

<+
-+
+
MOl + MZ1*zZ
<+
<+

MO2 + MZ2*ZZ
MO3 + MZ3*7Z

W onoun

FG1=FGR1+FSQ11*QC1+FSQ21*QS1 +FSQD11*QDCI+FSQD21*QDS1
@ + FSQL2*QC2+FSQ22*QS2 +FSQD12*QDC2+FSQD22*QDS2
@ +FSQL3*QC3+FSQ23*QS3 +FSQD1 3*QDC3+FSQD23*QDS3

FG2=FGR2+FSQ21*QCl -FSQ11*QS1+FSQD21*QDC1~FSQD11*QDS1
+FSQ22*QC2 ~FSQ12*QS2+FSQD22*QDC2~FSQD12*QDS2
+FSQ23*QC3 -FSQ13*QS3+FSQD23*QDC3+FSQD13*QDS3

[N

FG3=FGR3+FSQ31*Q01+FSQD31*QDO1
+FSQ32*Q02+FSQD32*QD02
+FSQ33*Q03+FSQD33*QD03 + FSO3

[N

MG1=MGR1+MSQ11*QC1+MSQ21*QS1+MSQD11*QDC1+MSQD21*QDS1
@ +MSQ1 2*QC2+MSQ22*QS2+MSQD1 2*QDC2+MSQD22*QDS2
@ +MSQ13*QC3+MSQ23*QS3+MSQD1 3*QDC3+MSQD23*QDS 3

MG2=MGR2+MSQ21*QC1-MSQ11*QS1+MSQD2 1*QDC1-MSQD1 1*QDS1
+MSQ22*QC2-MSQ1 2*QS2+MSQD22*QDC2-MSQD1 2*QDS2
+M5Q23*QC3-MSQ13*QS3+MSQD2 3*QDC3-MSQD1 3*QDS3

™o
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@
@

MG3=MGR3+MSQ31*Q01+MSQD31*QDO1
+M5Q32*Q02+MSQD32*QD02
+MSQ33*Q03-+MSQD33*QD03

COMPUTE ROOT LOADS OF BLADE # 1 IN SHANK AXES

aaoaoaoaa

aOaOaO0

D (@ R D

XA

o ™

1.17

FBLDL = FTEMI + FSQL1*QIlA +
+ FSQl2*QI2A +

+ FSQL3*QI3A +

FBLD2 = FTEM2 + FSQ21*QIlA +
FSQ22*QI2A +

FSQ23*QI3A +

+ + +

FBLD3 = FTEM3 + FSQ31*QIlA +
FSQ32*QI2A +

FSQ33*QI3A +

+ + +

MBLDl = MTEMl + MSQI1*QIlA +
MSQ12*QI2A +

MSQL3*QI3A +

+ +

MBLD2 = MTEM2 + MSQ21*QIlA +
MSQ22*QI2A +

MSQ23*QI3A +

+ +

MBLD3 = MTEM3 + MSQ31*QIIA +
MSQ32*QI2A +

MSQ33*QI3A +

+ + +

GIMBAL TO HUB TRANSFORMATIONS

FSQD11*QDI1A
FSQD12*QDI2A
FSQDI13*QDI3A

FSQD21*QDI1A
FSQD22*QDI2A
FSQD23*QDI3A

FSQD31*QDI1A
FSQD32*QDI2A
FSQD33*QDI3A

MSQD11*QDI1A
MSQD12*QDI2A
MSQD13*QDI3A

MSQD21*QDI1A
MSQD22*QDI2A
MSQD23*QDI3A

MSQD31*QDI1A
MSQD32*QDI2A
MSQD33*QDI3A

FCUL = CYC*FGl + SYC*FG2

FCU2 ==SYC*FGl + CYC*FG2

MCUL = CYC*MGl+SYC*MG2 - ZU*FCU2
MCU2 =~SYC*MG1+CYC*MG2 + ZU*FCUL
EGL = MCU2

FT1 = FCUl + QGL*FG3

MT1l = MCUl + QGl*MG3 + ZU*FCU2
MT2 = MCU2 - ZU*FTL

FHL = CYT*FT1 - SYT*FCU2

FH2 = SYT*FT1 + CYT*FCU2

FH3 = FG3 ~ QGl*FCUl

MHL = CYT*MTl - SYT*MT2

MH2 = SYT*MT1 + CYT*MT2

MH3 = MG3 - QGL*MCU1
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C 1.18 GIMBAL SERVO INTEGRATOR.
C
QDDG1=KGE*EG1+KGQC*QC1+KGQS*QS1
@ +KGVC*QDC1+KGVS*QDS1
c
QSG1=QGl
c
DUM14=ZP*QDG1
DUM15=ZP*QDDG1
DUM16=ZP*QSG1
DUM17=ZP*QDDG1
c :
QG1=GQQ*QSG1+GQV*QDG1+GQZV*DUM14
@ +GQA*QDDG1+GQZA*DUM1 5
c
QDG1=GVV*QDG1+GVQ*QSG1+GVZQ*DUM1 6
@ +GVA*QDDG1+GVZA*DUM17
c
C
c END THE ROTOR MODEL.
c
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2.0 SUPPORT SYSTEM EQUATIONS.

aaon

IF (TOWER .EQ. 0) GO TO 2010

c
C MODEL WITH THREE NORMAL MODES FOR SURGE, SWAY, AND YAW(TORSION).
C
C GENERALIZED FORCING FUNCTIONS
C
GS1l = GSF11*FHl1 + GSF13*FH3 + GSM12*MH2
GS2 = GSF22*FH2 + GSM23*MPOD
GS3 = GSF32*FH2 + GSM31*MHl
C
C MODAL ACCELERATIONS
C
SDD1 = GS1 - DS11*SD1 - W2S11%*Sl1
SDD2 = GS2 ~ DS22*SD2 - W2S522*S2
SDD3 = GS3 - DS33*SD3 - W2S33#S3
c
C NUMERICAL INTEGRATION OF MODAL COORDINATES
c
SD1 = SD1 + SDDI*DT
SD2 = SD2 + SDD2*DT
SD3 = SD3 + SDD3*DT
C
S1 = S1 + SDi1*DT
S2 = S2 + SD2*DT
S3 = S3 + SD3*DT
c
C TRANSLATIONAL VELOCITY
C
VHI = VBH1 + SV11*SDl
VH2 = VBH2 + SV22*SD2 + SV23*SD3
VH3 = VBH3 + SvV31%*SDl1
C
C ROTATIONAL VELOCITY
c
WH1 = WBH1 + SW13*SD3
WH2 = WBH2 + SW21*SDl1
WH3 = WBH3 + SW32*SD2
C
C TIME DERIVATIVE OF TRANSLATIONAL VELOCITY
c
VDHl = VDBHI + SV11*SDD1
VDH2 = VDBH2 + SV22*SDD2 + SV23*SDD3
VDH3 = VDBH3 + SV31*SDDI
c
C TIME DERIVATIVE OF ROTATIONAL VELOCITY
C
WDH1 = WDBH1 + SW13*SDD3
WDH2 = WDBH2 + SW21*SDD1
WDH3 = WDBH3 + SW32*SDD2
c
2010 CONTINUE
c

G-18




3.0-CONTROL SYSTEM

[eNeNe!

IF (CONTRL .EQ. 0) GO TO 3010

Cc
ZERR = SRQ - Z
ADl = AZl1 * ZERR
AD2 = AA21%*Al - AA22*A2 + AZ2 * ZERR
AD3 = AG3*ZA + ADO3
c
C NUMERICAL INTEGRATION
C

Al = Al + DT * ADI
A2 = A2 + DT * AD2

A3 = A3 + DT * AD3
C
C RESULTS
C
Cl = CAl2*A2
c2=0
c3 =0
c
3010 CONTINUE
c
LGC = LA13*A3 + LPR*PRQ + LG*ZA
c
c
C 4,0 - POWER TRAIN
c
IF (PWRTRN .EQ. 0) GO TO 4010
c
C ACCELERATIONS.
c

PDDl = -KP12*P2 -BP11*PD1 -BP12*PD2 +PM1*MH3 +PZD1*ZD
PDD2 = -KP22*P2 +BP21*PDl1 -BP22*PD2 +PM2*MH3 +PZD2*ZD +PL2*LGC

NUMERICAL INTEGRATION.

aaon

PD1
PD2
P2

PD1 + PDDL * DT
PD2 + PDD2 * DT
P2 + PD2 * DT

OUTPUTS

OO0

ZD
Z

ZpP
ZA

PDDI
PD1
z/20 - 1.
PD1 - PD2

[/

COMPUTE THE MOMENT APPLIED BY THE POWER TRAIN ON THE TOWER

MPOD = .... DEPENDS ON THE SPECIFICS OF THE POWER TRAIN ....

OO0 0

4010  CONTINUE
C
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[eNe N

@] [eNeN®] [eNeNe] oNoNe] eNeNsEsETK?]

aaooon

QOO0

RATE RESOLVER:

SDY = Z * DT

COMPUTE AMPLITUDE ERROR

EA = SY*SY + CY*CY - 1.

MAKE CORRECTION

CDY = CDY - .25*EA

SET UP ADVANCE

CYSAV = CY

CcY = CY * CDY - SY * SDY
SY = SY * CDY + CYSAV*SDY

5.0 AIR MASS.

RETARDATION VELOCITY

IF (RETARD .EQ. 0) GO TO 5010

ERROR FUNCTION

EVR = 1. = RV * RV * (VAH2*VAH2 + VAH3*VAH3)

CORRECTION SERVO
RV = RV + EVR*GCEV

RETARDATION

VRW = KAR * FH3 * RV * RHOR

5010 CONTINUE

WINDGUST RANDOM SIGNALS

IF (GUSTS .EQ. 0) GO TO 5020

EQUATIONS WHICH FOLLOW USE A RANDOM NUMBER GENERATOR WHICH
APPEARS AS A WHITE NOISE SOURCE TO EACH FILTER EQUATION.

QDDGU!=RANDOM( IGNORE)
QDDGU2=RANDOM(IGNORE)
QDDGU3=RANDOM( IGNORE)
QDDGU4=RANDOM( IGNORE)
QDDGUS=RANDOM( IGNORE)
QDDGU6=RANDOM( IGNORE)

-ZTG11*WGG11*QDGU1
-ZTG22*WGG22*QDGU2
~ZTG33*WGG33*QDGU3
-ZTG44*WGGLL*QDGUA
~ZTG5 5*WGG5 5*QDGUS
-2TG66*WGG66*QDGU6

G-20

~WGG11*WGG11*QGU1
-WGG22*WGG22*QGU2
-WGG33*WGG33*QGU3
~WGG44*WGGL4*QGU4
~WGG55*WGGS55*QGUS
-WGG66*WGG66*QGU6




NUMERICAL INTEGRATION OF WINDGUST FILTERS.

aOon

QDGU1=QDGU1+QDDGU1*DT
QDGU2=QDGU2+QDDGU2*DT
QDGU3=QDGU3+QDDGU3*DT
QDGU4=QDGU4+QDDGU4*DT
QDGU5=QDGUS5+QDDGU5S*DT
QDGU6=QDGU6+QDDGU6*DT

QGU1=QGU1+QDGUL*DT
QGU2=QGU2+QDGU2*DT
QGU3=QGU3+QDGU3*DT
QGU4=QGU4+QDGU4*DT
QGU5=QGU5+QDGUS*DT
QGU6=QGU6+QDGU6*DT

OUTPUTS

QOO

VG1=VGU11*QDGU1
VG2=VGU22*QDGU2
VG3=VGU33*QDGU3

WG1=WGU11*QDGU4
WG2=WGU22*QDGUS5
WG3=WGU33*QDGU6

C

5020 CONTINUE

C

C PRIMARY WIND SIGNALS

C
VWT1=VW1+VGl
VWT2=VYW2+VG2
VWT3=VW3+VG3

WWT1=WW1+WG1
WWT2=WW2+WG2
WWT3=WW3+WG3

(@)

VWT1=VWT1+VRW

INTERFERENCE EFFECTS:

FOR EACH BLADE, COMPUTE THE AUGMENTIVE AERO VELOCITY DUE TO INTERFERENCE
EFFECTS AS A FUNTION OF THE RADIAL STATION. IN THE CASE OF TOWER SHADOW
AND WINDSHEAR EFFECTS, THIS COMPUTATION CAN BE MORE CONVENIENTLY DONE
WITHIN THE RADIAL LOOP.

OO0OO0OOO0O00O0

CALL STOVAA ( SY, CY )

PASS THROUGH MODELS IS COMPLETE

kkkkkkkkkkkkx BOTTOM OF INFINITE LOOP *kkkkkkkkkkkkkkkkkik

a0

GO TO 9000
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APPENDIX H

SYSTEM EQUATIONS OF THE WIND TURBINE SIMULATION MODEL

Presented in this Appendix are the system equations which constitute
the WEST-3 wind turbine simulation model, i.e., these equations are the
normalized and scaled versions of those given in Appendix G.
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C
Chiddkikkhihhhhhhkkihkikkkiirhhkkhhhhhrhhrhikihhikhhhxhhihkhihkrkkkikk
c
C WEST-3 SYSTEM EQUATIONS: JUNE 1985
c
Chkkkkkihhkhhkhrhikhhkihkhkhkhhkhhhhhihhhkhihkhhhhkihhihkikikkikhkkkiik
C
C
C INITIALIZATIONS
c

NB = 2

NR = 11

Z = ZINT
ZD= 0

CY = 1.
SY =0
CDY= .5

VH1= VBH1
VH2= VBH2
VH3= VBH3
WH1= WBHI1
WH2= WBH2
WH3= WBH3

VDH1= VDBH1
VDH2= VDBH2
VDH3= VDBH3
WDH1= WDBH1
WDH2= WDBH2
WDH3= WDBH3

VWTL = VWl
VWT2 = VW2
VWT3 = VW3
WWT1 = WWl
WWT2 = WW2
WWT3 =
VRW =

[ R I I |
leNeoNoNoNo




PDl= Z
P2 =0
PD2= 0
MPOW = 0O

QIIA =0
QDIlA = 0
QDDIlA=
QI2A =
QDI2A =
QDDI2A=
QIlB =
QDIIB =
QDDI1B=
QI2B =
QDI2B =
QDDI2B=

[eoReoloNoNoNeNoNeNo

c
c

Chkkkkkkkkkkkkkkk* BEGINING OF INFINITE LOOP *##dkdkkdidhsk ik ekdkki ik
c

9000 CONTINUE

AEROELASTIC ROTOR MODEL

ROTOR SPEED VARIABLES

OOO0O00O0

ZP= MULT2 (Z-.5)
ZZ = ,5*%ZP*ZP + Zp
Z8Q = 2 * Z
1.2 HUB TO SHANK TRANSFORMATIONS

MANY OF THE TRANSFORMATIONS ARE COMMON TO ALL THE
BLADES, AND ARE PROCESSED OUTSIDE THE BLADE LOOP.

GEOMETRY

oo o0n

SYT
CYT

SYC*CY - CYC*SY
CYC*CY + SYC*SY

c

C INERTIAL VELOCITY

c
WTUMZ1 = CYT*WH1 + SYT*WH2
WIUMZ2 =-SYT*WH1 + CYT*WH2
WTUMZ3 = WH3
VIUL = CYT*VH1 + SYT*VH2 + ,4*ZU*WTUMZ2
VTU2 =-~SYT*VHl + CYT*VH2 - ,4*ZU*WTUMZ1
VTU3 = VH3

WCMZ1 = WTUMZL - .1*WTUMZ3*QGl + MULT2(Z*QG1)
WCMZ2 = WTUMZ2 + QDG
WCMZ3 = WIUMZ3 + .4*WTUMZ1*QGl




VCl = VTUl - ,2*VTU3*QGl - .4*ZU*WCMZ2

VC2 = VTU2 + .4%*ZU*WCMZ1
VC3 = VTU3 + .2*VTUL1*QGl

c
C AERO VELOCITY
c
WAHL = .5 *WHI + WWT1*CYR2 - WWT3*SYR2
WAH2 = .5 *WH2 + WWT2
WAH3 = .25*%WH3 + WWT1*SYR2 + WWI3*CYR2
VAHL = .125*VH]l + VWT1*CYR2 - VWI3*SYR2
VAH2 = .125%VH2 + VWT2
VAH3 = .125%VH3 + VWT1*SYR2 + VWT3*CYR2
c
WATUl = CYT*WAH1 + SYT*WAH2
WATU2 =~SYT*WAHI + CYT*WAH2
WATU3 = .2 *WAH3 - Z
VATUl = CYT*VAH1 + SYT*VAH2 + .1*ZU*WATU2
VATU2 =-SYT*VAHl + CYT*VAH2 - .1*ZU*WATUL
VATU3 = VAH3
C
WACl = WATUl - WATU3*QGl
WAC2 = WATU2 + .5*QDGI
WAC3 = WATU3 + .04*WATUL*QGl
VACl = VATUl - .2*VATU3*QGl - .1*ZU*WAC2
VAC2 = VATU2 + .1*ZU*WACI
VAC3 = VATU3 + .2*VATUI*QGl
C
C TIME DERIVATIVE OF INERTIAL VELOCITY.
C
DUMI = VDHl - Z*VH2
DUM2 = VDH2 + Z*VHI
TEMPl = WDH1 — Z*WH2
TEMP2 = WDH2 + Z*WHI
C
WDTUL = CYT*TEMP1 + SYT*TEMP2
WDTU2 =-SYT*TEMP1 + CYT*TEMP2
WDTU3 = WDH3-ZD
UDTUL = CYT*DUMI + SYT*DUM2 + .4*ZU*WDTU2
VDTU2 =-SYT*DUMl + CYT*DUM2 - .4*ZU*WDTUL
c
DUM3 = WDTUl ~ .05*WTUMZ3*QDGl + Z*QDGI
DUM4 = WDTU3 + .2 *WTUMZ1*QDGI
TEMP3= VDTUl - .1*VTU3*QDGI
TEMP4= VDH3 + .1*VTU1*QDGI
c
WDC1 = DUM3 - .1*DUM4*QGl
WDC2 = WDTU2 + .5*QDDGI
WDC3 = DUM4 + .4*DUM3*QGl
VDCl = TEMP3 - .2*TEMP4*QGl - .4*ZU*WDC2
VDC2 = VDTU2 + .4*ZU*WDCl
VDC3 = TEMP4 + .2*TEMP3*QGl
c

C INITIALIZATIONS FOR BLADE LOOP

c

I=0
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LOOPI = 0

SYBI =-SYB
CYBI = CYB

MULTIBLADE COORDINATE AND LOADS.

e EeNe!

QS1=0
QCl1=0
Q01=0
QDS1=0
QDC1=0
QDO1=0

Q52=0
QC2=0
Q02=0
QDS2=0
QDC2=0
QD02=0

QS3=0
QC3=0
Q03=0
QDS3=0
QDC3=0
QD03=0

FGR1=0
FGR2=0
FGR3=0

MGR1=0
MGR2=0
MGR3=0
o
Chxkkkkkkkkkkkkkx**  BEGINING OF BLADE LOOP *Akxkikkkkikikdkkikkkikkikk
C
C l.1 BLADE NUMBER SELECT
c
9001  CONTINUE
c
I=I+1
LOOPI = LOOPI + .25

SYBISV = SYBIL
SYBI = SYB*CYBI + CYB*SYBI
CYBI = CYB*CYBL - SYB*SYBISV

LOAD QI,QDI AND QDDI FOR BLADE I FROM
SPACE CONTAINING Q, QD AND QDD FOR ALL BLADES.

c
C
C
C
C CALL LOADQS(I)
c

C

THE FOLLOWING SEQUENCE IMPLEMENTS THE "LOADQS" FUNCTION FOR 2 BLADES




(@]

o000 0n

OO0

[eNe NP

eNeNe!

201 IF (I .GT. 1) GO TO 202
QI1=QIlA
QDI1=QDIIA
QDDI1=QDDI1A
QI2=QI2A
QDI2=QDI2A
QDDI2=QDDI2A
QI3=QI3A
QDI3=QDI3A
QDDI3=QDDI3A
GO TO 203

202  CONTINUE
QI1=QIlB
QDI1=QDIlB
QDDI1=QDDI1B
QI2=QI2B
QDI2=QDI2B
QDDI2=QDDI2B
QI3=QI3B
QDI3=QDI3B
QDDI3=QDDI3B

203 CONTINUE

1.2 HUB TO SHANK TRANSFORMATIONS
THESE TRANSFORMATIONS DEPEND ON THE BLADE AZIMUTHAL POSITION
GEOMETRY

CYI = CY*CYBI - SY*SYBI
SYI = SY*CYBI + CY*SYBI

SYC*CYBI + CYC*SYBI
CYC*CYBI - SYC*SYBI

SYCBI
CYCBI

no

BLADE FEATHERING CONTROL ANGLE
F = Cl - .1*C2*CYI - .1*C3*SYI

AERO VELOCITY

WAS1 = CYCBI*WACl - SYCBI*WAC2
WAS2 = SYCBI*WAC1 + CYCBI*WAC2
WAS3 = WAC3
VASl = CYCBI*VACl - SYCBI*VAC2
VAS2 = SYCBI*VACl + CYCBI*VAC2
VAS3 = VAC3

INERTIAL VELOCITY

WSMZ1l = CYCBI*WCMZ1 - SYCBL*WCMZ2




WSMZ2 = SYCBI*WCMZ1 + CYCBI*WCMZ2
WSMZ3 = WCMZ3
VSl = CYCBI*VCl - SYCBI*VC2

VS2 = SYCBI*VCl + CYCBI*V(C2
vs3 = VC3
C
C TIME DERIVATIVE OF INERTIAL VELOCITY.
C
WDS1 = CYCBI*WDCl - SYCBI*WDC2
WDS2 = SYCBI*WDCl + CYCBI*WDC2
WDS3 = WDC3
VDS1 = CYCBI*VDCl - SYCBI*VDC2
VDS2 = SYCBI*VDCl + CYCBI*VDC2
VDS3 = VDC3
C
C ACCELERATION TERMS FOR USE IN SECTION 1.7
C
C MANY OF THE TERMS NEEDED FOR COMPUTING THE DISTRIBUTED
C INERTIA LOADS AT EACH BLADE RADIAL STATION ARE COMMON TO
C ALL THE STATIONS, AND ARE GENERATED OUTSIDE THE BLADE LOOP
c
USl = VDS1 +.1 *WSMZ2*VS3 -,05*WSMZ3*VS2 + Z*VS2
US2 = VDS2 +.05*WSMZ3*VS1 -.1 *WSMZ1*VS3 - Z*VSl
US3 = VDS3 +,1* WSMZ1*VS2 -,1 *WSMZ2*VSl
C
C THE PHYSICAL EQUATION FOR THE NEXT STATEMENT IS ... TERM = WSMZ3 - 2 * Z
c
TERM = .025*WSMz3 - Z
Ull = -WSMZ3*TERM - ,1*WSMZ2*WSMZ2
U22 = -WSMZ3*TERM - ,1*WSMZ1*WSMZ1
U33 = -WSMZ2*WSMZ2 - WSMZ1*WSMZl
C
Ul2 = WSMZ2*WSMZ1
Ul3 = .05*WSMZ3*WSMZ1 - Z*WSMZ!
U23 = ,05*%WSMZ3*WSMZ2 - Z*WSMZ2
C
C INITIALIZE FOR RADIAL INTEGRATION OF BLADE,I.
C
J=0
C
X1=0
X2=0
X3=0
XD1=0
XD2=0
XD3=0
XDD1=0
XDD2=0
XDD3=0
C
GRI1=0
GRI2=0
GRI3=0
c
FRI1=0




FRI2=0

FRI3=0
c

MRI1=0

MRI2=0

MRI3=0
C

Chikkkkkkkkkkkkkkk  BEGINING OF RADIAL LOOP Hkkkikkkkkkkikhhhirkikkik

c
C 1.3 RADIAL STATION COUNTER.

C

9002 CONTINUE

J=J+1

C

C 1.4 RADIAL PHYSICAL PARAMETER BLOCKMOVE. MOVE ALL BLADE PHYSICAL
C PROPERTIES FROM A COMMON MEMORY REGION TO A SEPARATE REGION
C APPLICABLE FOR A SINGLE BLADE ELEMENT.

C

C ENTITIES MOVED (AND THEIR SIZES) ARE-

C

C ROO(9),RFS,DA(3*NM) ,DB(3*NM),B00(3) ,GP(4*NM) ,FP(9),MP(9),

C FAO0(3),MB,CB

C

c CALL MOVIT(J)

C
C**************************************************************************
C

C THE FOLLOWING SEQUENCE IMPLEMENTS THE "MOVIT" FUNCTION.

C

C THIS SEQUENCE IS SET UP FOR AN 11 RADIAL STATION SITUATION.

C

301 IF(J.GT.1)GO TO 302
ROO11=RO0O11A
RO021=R0O021A
RO031=RO031A
RO012=R0O012A
R0O022=R0022A
RO032=R0032A
RO013=R0O013A
RO023=R0023A
RO033=R0033A

DA11=DAllA
DA21=DA21A
DA31=DA31A
DA12=DA12A
DA22=DA22A
DA32=DA32A
DA13=DAl13A
DA23=DA23A
DA33=DA33A

DB11=DB11A
DB21=DB21A
DB31=DB31A




302

DB12=DB12A
DB22=DB22A
DB32=DB32A
DB13=DB13A
DB23=DB23A
DB33=DB33A

GP11=GPl1A
GP12=GP12A
GP13=GP13A
GP21=GP21A
GP22=GP22A
GP23=GP23A
GP34=GP34A

FP11=FPl1A
FP21=FP21A
FP31=FP31A
FP12=FP12A
FP22=FP22A
FP32=FP32A
FP13=FP13A
FP23=FP23A
FP33=FP33A

MP11=MP1lA
MP21=MP21A
MP31=MP31A
MP12=MP12A
MP22=MP22A
MP32=MP32A
MP13=MP13A
MP23=MP23A
MP33=MP33A

BOO1=B0O1A
B002=B002A
B003=B003A

FAO1=FAOlA
FAO02=FAOQ2A
FAO3=FAO3A

RFS=RFSA
MB=MBA
CB=CBA

S = SA
DS = DSA
GO TO 312

IF(J.GT.2)GO TO 303
RO0O11=RO0O11B




303

304

305

306

307

308

309

DS = DSB
GO TO 312

IF(J.GT.3)GO
ROO11=RO011C

DS = DSC
GO TO 312

IF(J.GT.4)GO
RO011=R0011D

DS = DSD
GO TO 312

IF(J.GT.5)GO
RO011=RO011E

DS = DSE
GO TO 312

IF(J.GT.6)GO
ROO11=ROOLLF

DS = DSF
GO TO 312

IF(J.GT.7)GO
ROO11=RO011G

* °*

DS = DSG
GO TO 312

IF(J.GT.8)GO
ROO11=ROO11H

DS = DSH
GO TO 312

IF(J.GT.9)GO
ROO11=RO0111

TO

TO

TO

TO

TO

TO

TO

304

305

306

307

308

309

310
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DS = DSI

GO TO 312
c
310 IF(J.GT.10)GO TO 311
RO0O11=R0O011J
DS = DSJ
GO TO 312
c
311 IF(J.GT.11)GO TO 312
RO0O11=RO011K
DS = DSK
c
312 CONTINUE
c
C 1.5 BLADE ELEMENT GEOMETRY
c
C MODAL ANGULAR ACCELERATION: BAX WITH RESPECT TO SAX.
c
EAl = DA11*QI1 + DA12*QI2 + DAIl3*QI3
EDAl = DA11*QDIl1 + DAL12*QDI2 + DA13*QDI3
EDDAl = DA11*QDDIl1 + DA12*QDDI2 + DA13*QDDI3
o
EA2 = DA21*QIl + DA22*QI2 + DA23*QI3
EDA2 = DA21*QDI1 + DA22*QDI2 + DA23*QDI3
EDDA2 = DA21*QDDI1 + DA22*QDDI2 + DA23*QDDI3
C
EA3 = DA31*QIl + DA32*QI2 + DA33*QI3
EDA3 = DA31*QDIl1 + DA32*QDI2 + DA33*QDI3
EDDA3 = DA31*QDDIl + DA32*QDDI2 + DA33*QDDI3
C
C LINEAR MODAL TRANSLATIONAL BAX MOVEMENT WITH RESPECT TO SAX.
c

EBL = DB11*QI1 + DB12*QI2 + DB13*QI3

EDBl = DBI1*QDI1 + DB12*QDI2 + DB13*QDI3

EDDBl = DB11*QDDIl1 + DB12*QDDI2 + DB13*QDDI3
C

EB2 = DB21*QI1 + DB22*QI2 + DB23*QI3

EDB2 = DB21*QDIl1 + DB22*QDI2 + DB23*QDI3

EDDB2 = DB21*QDDIl + DB22*QDDI2 + DB23*QDDI3
Cc

EB3 = DB31*QI1 + DB32*QI2 + DB33*QI3

EDB3 = DB31*QDI1 + DB32*QDI2 + DB33*QDI3

EDDB3 = DB31*QDDI1 + DB32*QDDI2 + DB33*QDDI3
C
C APPROXIMATIONS FOR SINE AND COSINE OF FEATHERING ANGLE, FS.
C IF "RFS" IS CONSTANT, THESE CAN BE OUTSIDE THE RADIAL LOOP.
C

H~11
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FS = RFS*F-RFS*FO

FSQ = FS*FS

SFS = MULT2 ( FS*(l.-.672*FSQ*(1.-.2*FSQ)) )

CFS = 1. - MULT2(FSQ*(1.-.3333*FSQ))
TRANSFORMATION FROM SAY TO BAX CONTROL POSITION

RO11 = ROO11

RO21 = ROO21*CFS + ROO31*SFS

RO31 = -ROO21*SFS + ROO31*CFS

RO12 = ROO12

RO22 = ,5*%R0022*CFS +,5*R0032*SFS

RO32 = -RO022*SFS +  RO032*CFS

RO13 = ROO13

RO23 = ROO23*CFS + RO033*SFS

RO33 =-,5*%R0023*SFS +.5*RO033*CFS

TRANSFORMATION FROM SAX TO BAX FINAL POSITION, FOR USE IN AERO
COMPUTATIONS. NOT SUITABLE FOR INERTAL LOADS, BECAUSE A LINEAR

MODEL FOR

R11
R21
R31
R12
R22
R32
R13
R23
R33

THE ELASTIC ROTATIONS HAS BEEN USED.

BRL POSITION ENTITIES.

BP1
BP2
BP3
BD1
BD2
BD3
Bl
B2
B3
SOLVE FOR
DUM
IX1
IX2
IX3

SOLVE FOR

WK

.25 *X1 + EBL
.125%X2 + EB2
.125*%X3 + EB3

nouon

.25 *XD1 + EDBI
«125*XD2 + EDB2
.125*%XD3 + EDB3

.1*BP1 + BOO1
BP2 + B002
BP3 + B0OO3
IX.
= ,5 * (EA2*EA2 + EA3*EA3)
= DUM*R0011
= DUM*R0012
= DUM*ROO013

IXD

H-12

= RO11 + .25*%*EA3*R0O21 - ,25*EA2*R0O31
= -EA3*RO11 + RO21 + .5 *EA1*RO31
= EA2*RO1l - .5 *EA1*RO21 + RO31
= RO12 +MULT2(EA3*R022)- EA2*R032
=-,125*%EA3*R012 + RO22 + .25*EA1*R032
= ,25 *EA2*R0O12 - EA1*RO22 + RO32
= RO13 + EA3*R023 -MULT2(EA2*R033)
=-,25 *EA3*RO13 + RO23 + EA1*RO33
= ,125%EA2*RO13 - ,25*EA1*R0O23 + RO33




TEMP5 = -EA3*EDA3 - EA2*EDA2

o
C THE PHYSICAL EQUATIONS FOR THE NEXT TWO STATEMENTS ARE
o
Cc TEMP6 = 2 * EAl * EDA2
C TEMP7 = 2 * EAl * EDA3
C
TEMP6 = EAL*EDA2
TEMP7 = EAL*EDA3
c
IXDl = ROO11*TEMP5 + ROO21*TEMP6 + ROO31*TEMP7
IXD2 = ,25*RO012*TEMP5 + ROO022*TEMP6 + RO032*TEMP7
IXD3 = ,25*RO013*TEMP5 + ROO23*TEMP6 + ROO33*TEMP7
o
C SOLVE FOR IXDD.
C
DUM =  MULT2 ( .625*(EA3*EDDA3 +EA2*EDDA2) )
TEMP8 = .5*EDA3*EDA3 + .5*EDA2*EDA2 + DUM
TEMP9 = - EDAl*EDA2
TEMP10 = - EDAL*EDA3
C
IXDD1 = ROO11*TEMP8 + ,25*R0O021*TEMP9 + .25*R0O031*TEMP10
IXDD2 = ROO12*TEMP8 + RO022*TEMP9 + RO032*TEMP10
IXDD3 = ROO13*TEMPS + RO023*TEMP9 + ROO33*TEMP10
C
C 1.6 SHANK TO BLADE TRANSFORMATIONS
o
C AERO VELOCITY
c
C CORRECTIONS TO THE AERO VELOCITY DUE TO INTERFERENCE EFFECTS.
C NORMALLY THESE ARE PART OF THE "AIR MASS'" SUBSYSTEM. FOR CONVENIENCE,
C THESE HAVE INCLUDED IN THE ROTOR MODEL. NOTE THAT INSTEAD OF COMPUTING
C AN AUGMENTIVE AERO VELOCITY, VAA(I), FOR CORRECTING VA(I), THE ACTUAL
C  AERO VELOCITY, VACT(I) IS COMPUTED IN THE FOLLOWING:
o
VACT1=VAS1
VACT2=VAS2
VACT3=VAS3

INTRODUCE TOWER SHADOW AND WIND SHEAR EFFECTS ON AIR VELOCITY.
IF THE SHADOW REGION IS DEFINED AS A SECTOR (I.E. AN ANGLE),
THE SHADOW EFFECT CAN BE INTRODUCED OUTSIDE THE RADIAL LOOP,

IN GENERAL, USE FUNCTION SUBPROGRAMS 'SHADOW'" AND "SHEAR" TO GET
THE MODULATION COEFFICIENTS, SHDFAC AND SHRFAC BY TABLE LOOK-UP.

SHD
SHR

SHADOW ( S, SYI, CYI ) : ZERO => NO SHADOW EFFECT,
SHEAR ( S, SYI, CYI ) : ZERO => NO SHEAR EFFECT.

HERE, THE MODULATION COEFFICIENTS ARE COMPUTED BY EQUATIONS.

TOWER SHADOW => 28 PER CENT WITHIN A SECTOR OF 30 DEGREES :
( SHADOW = ,28, AND SHDSEC = COS (15 DEG) ).

o000 000000n

WIND SHEAR => 15 PER CENT : ( SHEAR = .15 ).
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c
SHR = SHEAR * S * CYI
IF (SHR .EQ. 0) GO TO 1610
VACT3 = VACT3 - SHR * VACT3
c
1610 CONTINUE
c

C TO AVOID OVER/UNDER FLOWS AN ARBITRARY FACTOR IS USED IN "DUM= ... "
c

DUM = .4*CYI - .4*SHDSEC

IF (DUM .LT. O ) GO TO 1620

SHD = SHADOW

IF (SHD .EQ. 0) GO TO 1620

VACT3 = (1. - SHD) * VACT3

c
1620 CONTINUE

c

C THE ACTUAL AERO VELOCITY SEEN BY THE BLADE IS VACT(I).

c
VACTl + .5*BDl + .2*WAS2*B3 - WAS3#*B2

«2*VACT2 + .2*BD2 + WAS3*Bl -, 04*WAS1*B3
VACT3 + BD3 + .2*WAS1*B2 - WAS2*Bl1

TEMP11
TEMP12
TEMP13

TEMP = MULT8(.625*R32*TEMP12)

VAl = 4*%R11*TEMP1l + R12 *TEMP12 + .2*%R13 *TEMP13
VA2 = 1*R21*TEMP11 +MULT2(R22*TEMP12) + .2*R23 *TEMP13
VA3 .5*R31*TEMP11 + TEMP +MULT2(R33 *TEMP13)

1.7 DISTRIBUTED INERTIAL LOADS
THE PHYSICAL EQUATIONS FOR THE NEXT THREE STATEMENTS ARE,
( ~WSMZ3*BD2 + WSMZ2*BD3 + Z*XD2 )

2 *
2 % ( WSMZ3*BDl - WSMZ1*BD3 - Z*XDl )
2 * ( WSMZ1*BD2 - WSMZ2*BD1 )

TEMP 14
TEMP15
TEMP16

Bou

OO0 0O0O0O0

TEMP14 =-,8*%WSMZ3*BD2 + MULT2(.8*WSMZ2*BD3 + Z*XD2)
TEMP15 +4*WSMZ3*BDl - MULT2(.8*WSMZ1*BD3 + Z*XD1)
TEMP16 = ,4*% WSMZ1*BD2 - .2*WSMZ2*BDl

UMBR1 = US1 + XDD1 + TEMP14 +.8*WDS2*B3 - ,4*WDS3*B2
@ + MULT4(U11*Bl) +.8*%(.1*U12*B2 + U13*B3) - ZSQ*Xl

UMBR2 = US2 + XDD2 + TEMP15 + MULT2(WDS3*Bl) - .8*WDS1*B3
@ +.4%U12*%Bl + .8%(U22*B2 + U23*B3) - ZSQ*X2

UMBR3 = ,25*%(US3+XDD3) + TEMP16 + .2*WDS1*B2 - WDS2*Bl
@ + U13*Bl + .2*(U23*B2 + .1*U33*B3)

FMIl1 = - MULT2 (MB*UMBR1)
FMI2 = - MB*UMBR2
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FMI3 = - MULT2 (.8*MB*UMBR3)

C
C
C 1.8 AERO GEOMETRY
c
M2 = MULT2(VA2*RVC)
M3 = MULT2(VA3*RVC)

C
C
C 1.9 AERODYNAMIC COEFFICIENT TABLES
C
C 1.10 DISTRIBUTED AIR LOADS
C
C--—- SIMPLIFIED AERO MODEL, WITH THE FOLLOWING ASSUMPTIONS:
C
C LIFT COEFFICIENT eeceeses CFA3 = 6
C DRAG COEFFICIENT +eeesoe CFA2 = 0.01
C INFLOW ANGLE = TEMP13/VA2 = MNOR/M2
C ANGLE OF ATTACK ceseeso. M3/M2
C BLADE PRECONE ANGLE .... 0.12 RADIANS
C
C THE PHYSICAL EQUATIONS ARE,
C
o LIFT = 8886 * M2 * M3 * CB * PR
C LIFTX = 8886 * M3 * MNOR * CB * PR; LIFT COMPONENT PRODUCING
C DRAG = 14,81 * M2 * M2 * CB * PR
C

MNOR = MULT2(TEMP13*RVC)
C

LIFT = MULT4 ( .7075 * MULT2(M2*CB) * M3 * PR )
C

LIFTX = MULT4 ( .7075 * MNOR * M3 * PR * CB )
o
C TIP LOSS CORRECTION: EQUIVALENT TO AN EFFECTIVE RADIUS OF 97 7.
C

IF (TIPLOS .EQ. 0) GO TO 1110
IF (J .NE. 11) GO TO 1110
LIFT = .4 * LIFT
LIFTX = .4 * LIFTX

1110 CONTINUE

C
DRAG = .168 * M2*M2*PR*CB
C
FMAL = .6 * LIFT - FAOl
FMA2 = - DRAG + LIFTX - FA02
FMA3 = - LIFT - FAO3
FMA4 = .2 * QAC * CMA * CB
C
C 1.11 LOADS INTEGRAND ASSEMBLER.
c
FMBl = FMI1 + FMAl
FMB2 = FMI2 + FMA2
FMB3 = FMI3 + FMA3
C
IGRl = GP11*FMBl + GP12*FMB2 + GP13*FMB3
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IGR2
IGR3

IFR1
IFR2 =
IFR3

THE PHYSICAL

TEMP21
TEMP22

THE MB APPEARING IN THE NEXT TWO STATEMENTS IS ACTUALLY "MB*2Z0*Z(0"

TEMP23
TEMP24

IMR1 =

™ @

= GP21*FMBl + GP22*FMB2 + GP23*FMB3

GP34*FMAL

= FP11*FMBl + FP12*FMB2 + FP13#*FMB3

FP21*FMBl + FP22*FMB2 + FP23*FMB3

= FP31*FMB1 + FP32*FMB2 + MULT2(FP33*FMB3)

EQUATIONS FOR THE NEXT TWO STATEMENTS ARE,

= EDDBl + 2.*Z*EDB2 - ZSQ*EBI

EDDB2 - 2,*Z*EDBl - ZSQ*EB2

= .5*EDDBl + .8*Z*EDB2 - .2*ZSQ*EBI

EDDB2 - .4*Z*EDBl - .4*ZSQ*EB2

-MULT4 (MB*TEMP21)
-MULT4 (MB*TEMP22)
~MULT4 (MB*EDDB3)

MB*B001 + .05*FAQl
MB*B002 + .5 *FA02

MP11*FMBl + MP12*FMB2 + MP13*FMB3

+ .4 *(.5*BP2*FMB3 - .2*BP3*FMB2 - BP3*DUM9 + BP2*DUMI1O)
+ .025*%(X2*FA03 - ,8*X3*TEMP24)

IMR2 = MP21*FMBl + MP22*FMB2 + MULT2(MP23*FMB3)
@ + .5 *(,2*BP3*FMBl - .5*BP1*FMB3 - BP1*DUM10) + BP3*DUMS8
@ + .25%(X3*TEMP23-.25*X1*FA03)

IMR3 = MP31*FMBl1 + MP32*FMB2 + MP33*FMB3
@ + .5 *(.2*BP1*FMB2 - ,2*BP2*FMBl1 + BP1*DUM9) - BP2*DUM8
@ + .25%(.2*X1*TEMP24 - X2*TEMP23)

1.12 RADTAL SUMMATIONS.,

X1 = X1 + DS * IXl

X2 = X2 + DS * IX2

X3 = X3 + DS * IX3

XDl = XDl + DS * IXDI
XD2 = XD2 + DS * IXD2
XD3 = XD3 + DS * IXD3
XDD1 = XDDl + DS * IXDD1
XDD2 = XDD2 + DS * IXDD2
XDD3 = XDD3 + DS * IXDD3
GRI1 = GRIl + DS*IGRI
GRI2 = GRI2 + DS*IGR2
GRI3 = GRI3 + DS*IGR3
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FRIl = FRI1 + DS*IFRI
FRI2 = FRI2 + DS*IFR2
FRI3 = FRI3 + DS*IFR3

c
MRI1 = MRI1 + DS*IMRI
MRI2 = MRI2 + DS*IMR2
MRI3 = MRI3 + DS*IMR3
c
Cmmmmmm e RADIAL SWEEP DELAY LOOP
C

9005 CONTINUE
DELAY1 = DELAY1l -~ DELAY2
IF (DELAY1l .GT. 0) GO TO 9005
DELAY1 = DELAY3

c
C
c
C TEST FOR COMPLETION OF RADIAL STATIONS.
c
IF (J .LT. NR) GO TO 9002
c
C***************** END OF RADIAL LOOP Fe e Je Je e e Je de e K K ke do g de e ek ok ek
C
C CLEAN UP THE RADIAL SUMMATIONS.
C
X2 = ,5 * X2
X3 = ,5 * X3
C
XD2 = MULT2(XD2)
XD3 = MULT2(XD3)
C
XDD1 = MULT2(XDD1)
C
FRI3 = ,1 * FRI3
c
MRIl = .25 * MRII
MRI2 = ,1 * MRI2
MRI3 = .4 * MRI3
c
C———- SAVE FORCES AND MOMENTS OF BLADE # 1 FOR
c COMPUTATION OF ROOT LOADS IN SHANK AXES.
c
IF (I .GT. 1) GO TO 1130
FTEMl = FRII
FTEM2 = FRI2
FTEM3 = FRI3
MTEM1 = MRIl
MTEM2 = MRI2
MTEM3 = MRI3
C
C
C 1.13 MODAL COORDINATE INTEGRATIONS
C

1130 CONTINUE
C
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DUM11=ZP*QDI1

GI1=GRI1+GV11*QDI1+GZQ1l1*TEMP25+GZV11*DUMI1
+GV12*QDI2+GZQ12*TEMP26+GZV12*DUMI 2
+GV13*QDI3+GZQ13*TEMP 27+GZV 1 3*DUM1 3+ZZ*GBO1

GI2=GRI2+GV21*QDI1+GZQ21*TEMP25+GZV21*DUMI 1
+GV22*QDI2+GZQ22*TEMP26+GZV22*DUM1 2
+GV23*QDI3+GZQ23*TEMP 2 7+GZV 23*DUM1 3+Z2*GB02

GI3=GRI3+GV31*QDI1+GZQ31*TEMP25+GZV31*DUML 1
+GV32*QDI2+GZQ32*TEMP26+GZV32*DUM1 2
+GV33*QDI3+GZQ33*TEMP 27+GZV 33*DUM1 3+ZZ*GBO3

KQQll*QSIl  + KQV11*QDIL
KQZQ11*DUM21 + KQZV11*DUM11
KVQL1*QSI1  + KVV11*QDIl
KVZQ11*DUM21 + KVZV11*DUM11
.8*GIl - ESQQI1*QIl

KQQ22%QSI2  + KQV22*QDI2
KQZQ22*DUM22 + KQZV22*DUM12
KVQ22*%QSI2  + KVV22*QDI2
KVZQ22*DUM22 + KVZV22*DUM12
"MULT2 (.4*GI2 - ESQQ22*QI2)

KQQ33*QSI3  + KQV33*QDI3
KQZQ33*DUM23 + KQZV33*DUM13
KVQ33*QSI3  + KVV33*QDI3

DUM12=ZP*QD12
DUM13=ZP*QDI13
C
DUM21=ZP*QIl
DUM22=ZP*Q12
DUM23=ZP*Q13
C
TEMP25=ZZ*QIl
TEMP26=ZZ*QI2
TEMP27=22*QI13
Cc
C GENERALIZED MODAL EXCITATIONS
C
@
@
o
@
@
C
@
@
C
DUM24=ZP*GI1
DUM25=2P*GI2
DUM26=ZP*GI3
C
C MODE # 1 ENTITIES
C
QSIl = QIl
QIl =
@ +
QDIl =
@ +
QDDI! =
C
C MODE # 2 ENTITIES
C
QSI2 = QI2
QI2 =
@ +
QDI2 =
+
QDDI2 =
Cc
C MODE # 3 ENTITIES
C
QSI3 = QI3
QI3 =
@ +
QDI3 =
+

KVZQ33*DUM23 + KVZV33*DUM13
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+ KQGL1*GI}
+ KQZG11*DUM24
+ KVG11*GIl
+ KVZG11*DUM24

+ KQG22*GI2
+ KQZG22*DUM25
+ KVG22*GI2
+ KVZG22*DUM25

+ KQG33*GI3
+ KQZG33*DUM26
+ KVG33*GI3

+ KVZG33*DUM26




QDDI3 = 0
SAVE MODAL STATE VARIABLES
CALL STORQS(I)
THE FOLLOWING SEQUENCE IMPLEMENTS THE "STORQS" FUNCTION FOR 2 BLADES

ALSO SAVE THE GENERALISED FORCING FUNCTION FOR BLADE # 1

QOO0 O00

501 IF (I .GT. 1) GO TO 502
QI1A=QIl
QDI1A=QDI1
QDDI1A=QDDI1
QI2A=QI2
QDI2A=QDI2
QDDI2A=QDDI2
QI3A=QI3
QDI3A=QDI3
QDDI3A=QDDI3
GO TO 503

C

502 CONTINUE
QI1B=QIl
QDI1B=QDIl
QDDI1B=QDDI1
QI2B=QI2
QDI2B=QDI2
QDDI2B=QDDI2
QI3B=QI3
QDI3B=QDI3
QDDI3B=QDDI3

503  CONTINUE

1.14 MULTIBLADE MODAL COMBINATIONS

a0

SYBION=RNB*SYBI
CYBION=RNB*CYBI

QS1=QS1+QI1*SYBION
QC1=QC1+QI1*CYBION
Q01=Q01+QI1*RNB

QDS1=QDS1+QDI1*SYBION
QDC1=QDC1+QDI1*CYBION
QD01=QDO1+QDI1*RNB

QS2=QS2+QI2*SYBION
QC2=QC24+QI2*CYBION
Q02=Q02+QI2*RNB

QDS2=QDS2+QDI2*SYBION

QDC2=QDC2+QDI2*CYBION
QD02=QDO2+QDI2*RNB
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QS3=QS3+QI3*SYBION
QC3=QC3+QI3*CYBION
Q03=Q03+QI3*RNB

QDS3=QDS3+QDI3*SYBION

QDC3=QDC3+HDI3*CYBION

QD03=QDO3+QDI3*RNB
C 1.15 MULTIBLADE LOADS COMBINATIONS
FGRl = FGRl + CYBION*FRI1 + SYBION*FRI2

FGR2 = FGR2 SYBION*FRI1 + CYBION*FRI2
FGR3 = FGR3 + RNB*FRI3

MGR1 + CYBION*MRI1 + SYBION*MRI2
MGR2 - SYBION*MRI1 + CYBION*MRI2
MGR3 + RNB*MRI3

MGRI1
MGR2
MGR3

[ |

TEST FOR COMPLETION OF BLADES.

IF (I .LT. NB) GO TO 9001

Kk kkkkkkkkkkkkkkkk END OF BLADE LOOP Hikkdikdhhiddikkhihkikikik

1.16 GIMBAL LOADS SUMMATION

OO0 OQOQ *rQO000

FSQl1=FQl1+FZQl1*ZZ
FSQ21=FQ21+FZQ21*ZZ
FSQ31=FQ31+FZQ31*2Z

FSQD11=FQD1 1+FZQD1 1*ZP
FSQD21=FQD21+FZQD21*ZP
FSQD31=FQD3 1+FZQD3 1*ZP

MSQ11=MQ11+MZQl1*ZZ
MSQ21=MQ21-+MZQ21*ZZ
MSQ31=MQ314+MZQ31*ZZ

MSQDI 1=MQD1 14MZQD1 1*ZP
MSQD21=MQD21+MZQD21*ZP
MSQD3 1=MQD3 14+MZQD3 1*2ZP

FSQL2=FQl2+FZQ12*ZZ
FSQ22=FQ22+FZQ22*2Z
FSQ32=FQ32+FZQ32*ZZ

FSQD12=FQD12+FZQD1 2*Zp
FSQD22=FQD22+FZQD22*ZP
FSQD32=FQD3 2+FZQD32*ZP

MSQ12=MQ12+MZQ12*Z2Z
MSQ22=MQ224MZQ22*ZZ
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MSQ32=MQ32+MZQ32*ZZ

MSQD12=MQD12+MZQD1 2*ZP
MSQD22=MQD22+MZQD22*ZP
MSQD32=MQD32+MZQD32*ZP

FSQ13=FQ13+F2zQ13*2Z
FSQ23=FQ23+F2Q23*22
FSQ33=FQ33+F2Q33*2Z

FSQD13=FQD13+FZQDI 3*ZP
FSQD23=FQD23+FZQD23*ZP
FSQD33=FQD3 3+FZQD33*ZP

MSQ13=MQ13+MZQ13*ZZ
MSQ23=MQ23+MZQ23*ZZ
MSQ33=MQ33+MZQ33*22

MSQD1 3=MQD1 3+MZQD1 3*ZP
MSQD23=MQD23+M2ZQD23*ZP
MSQD33=MQD3 3+MZQD3 3*ZP

FSO1 FOl + MULT2(FZ1*ZZ)
FS02 FO2 + FZ2*22Z
FS03 = F03 + Fz3*z2Z
MSO1 MOl + MZ1*ZZ
MS02 = M02 + MZ2*2Z
MS03 = MO3 + MZ3*ZZz

FG1=FGRI+FSQ11*QC1+FSQ21*QS1 +FSQD11*QDC1+FSQD21*QDS1

@ + FSQ12*QC2+MULT4 (FSQ22*QS2 )+FSQD12*QDC2+FSQD22*QDS2

@ +FSQ13*QC3+FSQ23*QS3 +FSQD13*QDC3+FSQD23*QDS3
FG2=FGR2+FSQ21*QCl -FSQl1*QS1+FSQD21*QDC1-FSQD11*QDS1

@ +MULT4 (FSQ22*QC2 )~FSQ12*QS2+FSQD22*QDC2-FSQD12*QDS2

@ +FSQ23*QC3 -FSQLl3*QS3+FSQD23*QDC3+FSQD13*QDS3
FG3=FGR3+FSQ31*Q01+FSQD31*QDO1

@ +FSQ32*Q02+FSQD32*QD02

@ +FSQ33*Q03+FSQD33*QD03 + FS03
MG1=MGR1+MSQ11*QC1+MSQ21*QS1+MSQD1 1*QDC1-+MSQD21*QDS1

@ +MSQ12*QC2+MSQ22*QS2-+H1SQD12*QDC2+MSQD22*QDS2

@ +H15Q13*QC3-+MSQ23*QS3-+MSQD1 3*QDC3+MSQD23*QDS3
MG2=MGR2+MSQ21*QC1-MSQ11*QS1+MSQD21*QDC1-MSQD11*QDS1

@ +MSQ22*QC2-MSQ12*QS2+MSQD22*QDC2-MSQD12*QDS2

@ +HMSQ23*QC3-MSQ13*QS3+MSQD23*QDC3~MSQD1 3*QDS3
MG3=MGR3+MSQ31*Q01+MSQD31*QDO1

@ +MULT2 (MSQ32*Q02 )+MSQD32*QD02

@ +MSQ33*Q03+MSQD33*QD03

COMPUTE CORRECTIONS TO THE FLATWISE AND EDGEWISE MODAL QUANTITIES
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C THESE CORRECTIONS WERE ADDED TO THE MOD-0 WIND TURBINE MODEL TO
C ELIMINATE NUMERICAL INSTABILITIES WHICH AROSE WHEN THE ROTOR MODEL

C WAS COUPLED TO THE POWER TRAIN AND THE TOWER MODELS.

C

C
iF (TOWERX .EQ. O0) GO TG 6010
c
C FLATWISE MODE:
c
C CORRECTION TO THE ACCELERATION
o
QDDIX = .1 * (- .596 * FG3 + .621 * SDD1 + .332 * 5l)
Cc
C CLEAN UP THE FLATWISE MODAL QUANTITIES
C
QDDIIA = QDDIlA + QDDIX
QDDIIB = QDDILB + QDDIX
o
QDSAVA = QDIlA
QDSAVB = QDI1B
QDI1A = QDIlA + DTQ * QDDIX
QDI1B = QDILB + DTQ * QDDIX
c
QIlA = QIlA + .4 * DTQ * (QDI1A-QDSAVA)
QI1B = QIlB + .4 * DTQ * (QDI1B-QDSAVB)
o
C COMPUTE THE CORRECT THRUST
C
FG3 = FG3 + .7453 * QDDIX
o
6010 CONTINUE
C
o
IF (PWRTRN .EQ. 0) GO TO 6020
C
C EDGEWISE MODE:
C
C CORRECTION TO THE ACCELERATION
o
MG3X = - MULT2 (MG3)
QDD2X = - MULT4 (.819*MG3X — .655*MPOW) + .0453 * ZD
o
C CLEAN UP THE EDGEWISE MODAL QUANTITIES
C
QDDI2A = QDDI2A + QDD2X
QDDI2B = QDDI2B + QDD2X
C
QDSAVA = QDI2A
QDSAVB = QDI2B
QDI2A = QDI2A + DTQ * QDD2X
QDI2B = QDI2B + DTQ * QDD2X
C

QI2A = QI2A + .4 * DTQ * (QDI2A-QDSAVA)
QI2B = QI2B + .4 * DTQ * (QDI2B-QDSAVB)
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C COMPUTE THE CORRECT TORQUE

c

c

[sNeoNoNeoNe NS

aOO0O0

MG3 = - ( .5*MG3X + .1446*QDD2X)
6020  CONTINUE
COMPUTE ROOT LOADS OF BLADE # 1 IN SHANK AXES

FBLDl = FTEMl + FSQI1*QIlA + FSQD11*QDIlA
@ + FSQ12*QI2A + FSQD12*QDI2A
@ + FSQ13*QI3A + FSQDI13*QDI3A

FBLD2 = FTEM2 + FSQ21*QIlA + FSQD21*QDI1A
@ +MULT4(FSQ22*QI2A)+ FSQD22*QDI2A
g + FSQ23*QI3A + FSQD23*QDI3A

FBLD3 = FTEM3 + FSQ31*QI1A + FSQD31*QDI1A
@ + FSQ32*QI2A + FSQD32*QDI2A
@ + FSQ33*QI3A + FSQD33*QDI3A

MBLDl = MTEM1 + MSQL1*QI1A + MSQD11*QDIlA
@ + MSQL2*QI2A + MSQD12*QDI2A
@ + MSQI3*QI3A + MSQD13*QDI3A

MBLD2 = MTEM2 + MSQ21*QI1A + MSQD21*QDI1A
@ + MSQ22*QI2A + MSQD22*QDI2A
@ + MSQ23*QI3A + MSQD23*QDI3A

MBLD3 = MTEM3 + MSQ31*QIlA + MSQD31*QDIIA
@ +MULT2(MSQ32*QI2A)+ MSQD32*QDI2A
@ + MSQ33*QI3A + MSQD33*QDI3A

1.17 GIMBAL TO HUB TRANSFORMATIONS

FCUl = CYC*FGl + SYC*FG2

FCU2 =-SYC*FGl + CYC*FG2

MCUL = CYC*MG1+SYC*MG2 - ,025*%ZU*FCU2

MCU2 =-SYC*MG1+CYC*MG2 + .025*ZU*FCUl

EGl = MCU2

FT1 = FCUl + MULT2(QGLl*FG3)

MT1 = MCUl + .05*QGl*MG3 + .025*ZU*FCU2

MI2 = MCU2 - .025*ZU*FT1

FHl = CYT*FT1 - SYT*FCU2

FH2 = SYT*FT1 + CYT*FCU2

FH3 = MULT2 (FG3 - .02*QGl*FCUl)
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MH1 = CYT*MT1 - SYT*MT2
MH2 = SYT*MT1 + CYT*MT2
MH3 = MG3 - .8*QGl*MCU1

1.18 GIMBAL SERVO INTEGRATOR.

e NNl

QDDG1=KGE*EG1+KGQC*QC1+KGQS*QS1
@ +KGVC*QDC1+KGVS*QDS1

QSG1=QGl

DUM14=ZP*QDG1
DUM1 5=ZP*QDDG1
DUM16=ZP*QSG1
DUM17=ZP*QDDG1

QG1=GQQ*QSG1+GQV*QDG1+GQZV*DUM14

@ +GQA*QDDG1+GQZA*DUML 5

QDG1=GVV*QDG1+GVQ*QSG1+GVZQ*DUM16

@ +GVA*QDDG1+GVZA*DUM17

END THE ROTOR MODEL.

sNeNeNe!
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2.0 SUPPORT SYSTEM EQUATIONS.

aaan

IF (TOWER .EQ. 0) GO TO 2010
c
C MODEL WITH THREE NORMAL MODES FOR SURGE, SWAY, AND YAW(TORSION).
c
C GENERALIZED FORCING FUNCTIONS
c
GS1 = GSF11*FHl + GSF13*FH3 + GSM12*MH2
GS2 = GSF22*FH2 + GSM23*MPOD
GS3 = GSF32*FH2 + MULT2(GSM31*MH1)
C
C MODAL ACCELERATIONS
c
SDD1 = GS1 - DS11*SD1 - W2S11*sl
SDD2 = GS2 ~ DS22*SD2 - W2S22*S2
SDD3 = GS3 - DS33*SD3 - W2S33*S3
C
C NUMERICAL INTEGRATION OF MODAL COORDINATES
c
SDL = SDI + .2*SDD1*DTS
SD2 = SD2 + .2*SDD2*DTS
SD3 = SD3 + .4*SDD3*DTS
C
Sl = S1 + SDL*DTS
S2 = S2 + SD2*DTS
S3 = S3 + SD3*DTS
C
C TRANSLATIONAL VELOCITY
C
VHL = VBHI + SV11*SDI
VH2 = VBH2 + SV22*SD2 + .5*SV23*SD3
VH3 = VBH3 + SV31*SDI
C
C ROTATIONAL VELOCITY
C
WH1 = WBH1 + ,5*SW13*SD3
WH2 = WBH2 +  SW21*SD1
WH3 = WBH3 +  SW32*SD2
C
C TIME DERIVATIVE OF TRANSLATIONAL VELOCITY
C
VDHL = VDBH1 + SV11*SDDI
VDH2 = VDBH2 + SV22*SDD2 + SV23*SDD3
VDH3 = VDBH3 + SV31*SDD1
C
C TIME DERIVATIVE OF ROTATIONAL VELOCLTY
C
WDHI = WDBH! + SW13*SDD3
WDH2 = WDBH2 + SW21*SDDI
WDH3 = WDBH3 + SW32*SDD2
c
2010  CONTINUE
c
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c
C 3.0~CONTROL SYSTEM

C
IF (CONTRL .EQ. 0) GO TO 3010
c
ZERR = MULT4 (SRQ - Z)
AD1 = AZl * ZERR
AD2 = AA21%Al - AA22*A2 + AZ2 * ZERR
AD3 = AG3*ZA + ADO3
c
C NUMERICAL INTEGRATION
c
Al = Al + DTCl * ADl
A2 = A2 + MULT2 (DTC2 * AD2)
A3 = A3 + DTC3 * AD3
C
C RESULTS
C
Cl = CA12*A2
€2 =0
C3 =0
C
3010  CONTINUE
C
LGC = MULT2 (LA13*A3 + LPR*PRQ + LG*ZA)
C
C
C 4.0 - POWER TRAIN
c
IF (PWRTRN .EQ. 0) GO TO 4010
C

C THE EQUATIONS SHOWN HERE FOR THE POWER TRAIN MODEL ARE THE SPECIALIZED
C FORMS USED IN THE MOD-O SIMULATION. THESE SPECIAL FORMS WERE NEEDED TO
C ELIMINATE THE NUMERICAL INSTABILTY OBSERVED DURING THE COUPLING OF THE
C ROTOR AND THE POWER TRAIN MODELS.

C
C ACCELERATIONS.
c
PDDL = ZD - MULT2(.5787*QDD2X)
PDD2 = .1*PDDl-.5674*MPOW+BP21*PD1-BP22*PD2+ MULT2(.7095%LGC)
C
C NUMERICAL INTEGRATION.
C
PD1l = PD1 + PDDl * DTPl
PD2 = PD2 + PDD2 * DTP2
P2 =P2 + ,5%*PD2 * DTP2
C

C FIND THE TORQUES APPLIED BY THE POWER TRAIN TO THE ROTOR & THE TOWER
c

MPOW = MULT2 (.784 * P2) + BPOW1 * PDl + BPOW2 * PD2
MPOD = - BPOD1*PDI + BPOD2*PD2 - LGC

C

C OUTPUTS

C
ZD = PDD1
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Z = PDl
ZP= MULT2 (Z-.5)
ZA = PDl - ,1*PD2

C
4010 CONTINUE
c
C RATE RESOLVER:
C TO AVOID OVER/UNDER FLOW PROBLEMS COMPUTE ONE HALF OF THE SINE AND
C COSINE OF THE ROTOR AZIMUTHAL ANGLE, AND THEN DOUBLE THE RESULTS.
c
SYHAF = ,5*%SY
CYHAF = ,5*CY
C
SDY = ZP*DT + DT
C
C COMPUTE AMPLITUDE ERROR
C
EA = SYHAF*SYHAF + CYHAF*CYHAF - .25
C
C MAKE CORRECTION
C
CDY = CDY - .5*EA
C
C SET UP ADVANCE
c
CYSAV = CYHAF
CYHAF = (CYHAF*CDY+CYHAF*CDY) - SYHAF*SDY
SYHAF = (SYHAF*CDY+SYHAF*CDY) + CYSAV*SDY
C
CY = MULT2 (CYHAF)
SY = MULT2 (SYHAF)
C
C
C 5.0 AIR MASS.
C
C RETARDATION VELOCITY
C
IF (RETARD .EQ. 0) GO TO 5010
C
C  ERROR FUNCTION
o
EVR = .04 - MULT4 ( RV*RV * (VAH2*VAH2 + VAH3*VAH3) )
C
C CORRECTION SERVO
C
RV = RV + MULT16 (EVR*GCEV)
C
C  RETARDATION
C
VRW = KAR * FH3 * RV * RHOR
C

5010 CONTINUE

eNeNe]

WINDGUST RANDOM SIGNALS
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o

IF (GUSTS .EQ. 0) GO TO 5020

/QDDGU1=RANDOM( IGNORE) -ZTG11*WGG11*QDGU1
QDDGU2=RANDOM(IGNORE) -ZTG22*WGG22*QDGU2
QDDGU3=RANDOM( IGNORE) =ZTG33*WGG33*QDGU3
QDDGU4=RANDOM(IGNORE) =-ZTG44*WGG44*QDGU4
QDDGU5=RANDOM(IGNORE) =ZTG55*WGG55*QDGUS
QDDGU6=RANDOM(IGNORE) -ZTG66*WGG66*QDGU6

C  NUMERICAL INTEGRATION OF WINDGUST FILTERS.

[eNe]

c
5020
C

QDGU1=QDGU1+QDDGU1*DTG
QDGU2=QDGU2+QDDGU2*DTG
QDGU3=QDGU3+QDDGU3*DTG
QDGU4=QDGU4+QDDGU4*DTG
QDGU5=QDGU5+QDDGU5S*DTG
QDGU6=QDGU6+QDDGU6*DTG

QGU1=QGU1+QDGU1*DTG
QGU2=QGU2+QDGU2*DTG
QGU3=QGU3-+QDGU3*DTG
QGU4=QGUA+QDGUL*DTG
QGU5=QGU5+QDGUS*DTG
QGU6=QGU6-+QDGU6*DTG

OUTPUTS

VG1=VGU11*QDGU1
VG2=VGU22*QDGU2
VG3=VGU33*QDGU3

WG1=WGU11*QDGU4
WG2=WGU22*QDGU5
WG3=WGU33*QDGUS6

CONTINUE

C PRIMARY WIND SIGNALS

c

VWT1=VW1+VGl
VWT2=VW2+VG2
VWT3=VW3+VG3

WWT1=WWI1+WG1
WWT2=WW2+WG2
WWT3=WW3+WG3

VWT1=VWT1+VRW
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EQUATIONS WHICH FOLLOW USE A RANDOM NUMBER GENERATOR WHICH
APPEARS AS A WHITE NOISE SOURCE TO EACH FILTER EQUATION.,

~WGG11*WGG11*QGU1
~WGG22*WGG22*QGU2
-WGG33*WGG33*QGU3
-WGG44*WGG44*QGU4L
-WGG55*WGG55*QGUS
-WGG66*WGG66*QGU6




C INTERFERENCE EFFECTS: FOR CONVENIENCE, TOWER SHADOW AND WINDSHEAR
C HAVE BEEN INCLUDEDIN THE ROTOR MODEL.

g PASS THROUGH MODELS IS COMPLETE

g************ BOTTOM OF INFINITE LOOP *&*kkkkkkikkkkkkkkkik

¢ GO TO 9000
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